Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic mo...Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.展开更多
A well-known pseudopotential is used to investigate the superconducting state parameters (SSP), viz., electronphonon coupling strength, Coulomb pseudopotential, transition temperature, isotope effect exponent and ef...A well-known pseudopotential is used to investigate the superconducting state parameters (SSP), viz., electronphonon coupling strength, Coulomb pseudopotential, transition temperature, isotope effect exponent and effective interaction strength for AgxZn1-x and AgxAl1-x binary alloys theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of various exchange and correlation functions is concluded from the present study. Comparison with others such experimental values is encouraging, which confirms applicability of the model potential in explaining the superconducting state parameters of binary mixture.展开更多
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref...The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.展开更多
There have been significant advances in the application of critical state,CS,in liquefaction potential assessment.This was done by comparing state parameter,j with estimated characteristic cyclic stress ratio,CSR due ...There have been significant advances in the application of critical state,CS,in liquefaction potential assessment.This was done by comparing state parameter,j with estimated characteristic cyclic stress ratio,CSR due to an earthquake.A cyclic resistance ratio,CRR curve,which can be determined from cyclic liquefaction tests,separates historical liquefied and non-liquefied data points(j,CSR).On the other hand,the concepts of equivalent granular state parameter,j*,which was developed for sands with fines,can be used in lieu j to provide a unifying framework for characterizing the undrained response of sands with non/low plasticity fines,irrespective of fines content(fc).The present work combines these two propositions,and by merely substituting j*for j into the aforementioned CS approach to capture the influence of fc.A series of static and cyclic triaxial tests were conducted,separately and independently of the concept of j*,for sand with up to fc of 30%.The clean sand was collected from Sabarmati river belt at Ahmedabad city in India which was severely affected during the Bhuj earthquake,2001.The experimental data gave a single relation for CRR and j*which was then used to assess liquefaction potential for a SPT based case study,where fc varies along the depth.The prediction matched with the field observation.展开更多
Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unkno...Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.展开更多
The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All o...The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.展开更多
A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeforma...A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license展开更多
Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intell...Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.展开更多
Based on[1],the stress structures of the smooth region and shear lip of the specimens have been investigated in the paper.The characteristics of the stress structure in the smooth region have been found that the varia...Based on[1],the stress structures of the smooth region and shear lip of the specimens have been investigated in the paper.The characteristics of the stress structure in the smooth region have been found that the variable z can separated out;the stresses in the midsection can be obtained by the plane strain FEM results or HRR structure modified by the stress triaxiality.The effects of load level and thickness on the stress structure can be reflected by the distribution of CTOD along the thickness direction.The obtained expressions of the stresses are very simple and visualized.The analyses of the stress structure in the shear lip show that the stresses can be obtained by different methods of interpolation to a certain precise degree.A new degree parameter of the plane strain state has been put forward and studied.The parameter can reflect relatively well the variation of the kind and thickness of the specimen as well as the load level.The fracture parameter has also been investigated to be sure that it can be obtained by modified CTOD with the stress triaxiality.展开更多
Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the...Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the breakage critical state plane(BCSP).A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP.Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio-pressure index,which was also incorporated into the formulations of the bounding stress ratio and plastic modulus.A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials,and was shown to sufficiently capture the breakage phenomenon.展开更多
To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in c...To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.展开更多
A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites...A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.展开更多
In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based...In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.展开更多
The phonon dispersion curves (PDC) of Ca70Mg30 metallic glass has been studied at room temperature in terms of phonon eigen frequencies of longitudinal and transverse modes employing three different approaches propo...The phonon dispersion curves (PDC) of Ca70Mg30 metallic glass has been studied at room temperature in terms of phonon eigen frequencies of longitudinal and transverse modes employing three different approaches proposed by Hubbard and Beeby (J. Phys. C: Solid State Phys. 13 (1969) 556), Takeno and Goda (Prog. Theor. Phys. 45 (1971) 331; 47 (1972) 790) and Bhatia and Singh (Phys. Rev. B 31 (1985) 4751). The well recognized model potential of Gajjar et al. is employed successfully to explain electron-ion interaction in the metallic glass. The effective pair potential is used to generate the pair correlation function g(r). The local field correction function (Int. J. Mod. Phys. B 17 (2003) 6001) is used for the first time to introduce the exchange and correlation effects on the aforesaid properties. The present findings of PDCs are found to be in agreement with the available theoretical as well as experimental data. The thermodynamic and elastic properties, i.e. longitudinal and transverse sound velocities, isothermal bulk modulus, modulus of rigidity, Poisson's ratio, Young's modulus and Debye temperature, are also investigated successfully.展开更多
基金Project(2010BC732101)supported by the National Basic Research Program of China
文摘Numerous experimental studies reveal that the mechanical and deformational behaviors of sands are dependent on the combined effect of void ratio and stress. To predict this complex behavior of sands, a hypo-elastic model is developed based on the cross-anisotropic elasticity model, which involves four parameters: bulk module, tangent Young's module, volume deformation coefficient and Poisson ratio. A parameter defined as virtual peak deviatoric stress dependent on state parameter is introduced into hyperbolic stress strain relationship to determine tangent Young's module. In addition, an existing fitting equation for isotropic compression curves and an existing dilatancy equation, which can consider the effect of state of sands, are employed to determine bulk module and volume deformation coefficient. Thirteen model constants are involved in the proposed model, the values of which are fixed for a sand over a wide range of initial void ratios and initial confining pressures. Well known experimental data for drained and undrained triaxial compression tests of Toyoura sand are successfully modeled.
文摘A well-known pseudopotential is used to investigate the superconducting state parameters (SSP), viz., electronphonon coupling strength, Coulomb pseudopotential, transition temperature, isotope effect exponent and effective interaction strength for AgxZn1-x and AgxAl1-x binary alloys theoretically for the first time. We have incorporated here five different types of the local field correction functions to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of various exchange and correlation functions is concluded from the present study. Comparison with others such experimental values is encouraging, which confirms applicability of the model potential in explaining the superconducting state parameters of binary mixture.
基金The National Natural Science Foundation of China under contract No. 42274159the Project supported by Key Laboratory of Space Ocean Remote Sensing and Application,MNR under contract No.2023CFO016。
文摘The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval.
基金financial support for Australian Academy of Science Early Career Fellowship(RI 18.6) in 2012-2013 from the Australia-India Strategic Research Fund (AISRF) to visit Department of Civil Engineering,Indian Institute of Science,Bangalore,India to work for the background studies of this paper
文摘There have been significant advances in the application of critical state,CS,in liquefaction potential assessment.This was done by comparing state parameter,j with estimated characteristic cyclic stress ratio,CSR due to an earthquake.A cyclic resistance ratio,CRR curve,which can be determined from cyclic liquefaction tests,separates historical liquefied and non-liquefied data points(j,CSR).On the other hand,the concepts of equivalent granular state parameter,j*,which was developed for sands with fines,can be used in lieu j to provide a unifying framework for characterizing the undrained response of sands with non/low plasticity fines,irrespective of fines content(fc).The present work combines these two propositions,and by merely substituting j*for j into the aforementioned CS approach to capture the influence of fc.A series of static and cyclic triaxial tests were conducted,separately and independently of the concept of j*,for sand with up to fc of 30%.The clean sand was collected from Sabarmati river belt at Ahmedabad city in India which was severely affected during the Bhuj earthquake,2001.The experimental data gave a single relation for CRR and j*which was then used to assess liquefaction potential for a SPT based case study,where fc varies along the depth.The prediction matched with the field observation.
基金Supported by National Natural Science Foundation of China(Grant Nos.51175157,U124208)
文摘Physical parameters are very important for vehicle dynamic modeling and analysis.However,most of physical parameter identification methods are assuming some physical parameters of vehicle are known,and the other unknown parameters can be identified.In order to identify physical parameters of vehicle in the case that all physical parameters are unknown,a methodology based on the State Variable Method(SVM) for physical parameter identification of two-axis on-road vehicle is presented.The modal parameters of the vehicle are identified by the SVM,furthermore,the physical parameters of the vehicle are estimated by least squares method.In numerical simulations,physical parameters of Ford Granada are chosen as parameters of vehicle model,and half-sine bump function is chosen to simulate tire stimulated by impulse excitation.The first numerical simulation shows that the present method can identify all of the physical parameters and the largest absolute value of percentage error of the identified physical parameter is 0.205%;and the effect of the errors of additional mass,structural parameter and measurement noise are discussed in the following simulations,the results shows that when signal contains 30 d B noise,the largest absolute value of percentage error of the identification is 3.78%.These simulations verify that the presented method is effective and accurate for physical parameter identification of two-axis on-road vehicles.The proposed methodology can identify all physical parameters of 7-DOF vehicle model by using free-decay responses of vehicle without need to assume some physical parameters are known.
文摘The multi-reference configuration interaction method and aug-cc-pvqz (AVQZ) have been used to calculate potential energy curves (PECs) of the singlet and triplet states of the riu and rig symmetry of B2++. All of the four states (^l∏u, ^1∏g, ^3∏u and ^3∏g) are found to be metastable states, though the potential well of ^3∏u symmetry is very shallow. Based on the PECs, the analytical potential energy functions (APEFs) of these states have been fitted using the least square fitting method and two models of function. The spectroscopic parameters of each state are also calculated, and are compared with other investigations in the literature. The credibility and veracity of the two functions are evaluated. Some ideas to improve the fitting accuracy are presented. Also the vibrational levels for each state are predicted by solving the SchrSdinger equation of nuclear motion.
文摘A unified constitutive modeling approach is highly desirable to characterize a wide range of engineeringmaterials subjected simultaneously to the effect of a number of factors such as elastic, plastic and creepdeformations, stress path, volume change, microcracking leading to fracture, failure and softening,stiffening, and mechanical and environmental forces. There are hardly available such unified models. Thedisturbed state concept (DSC) is considered to be a unified approach and is able to provide materialcharacterization for almost all of the above factors. This paper presents a description of the DSC, andstatements for determination of parameters based on triaxial, multiaxial and interface tests. Statementsof DSC and validation at the specimen level and at the boundary value problem levels are also presented.An extensive list of publications by the author and others is provided at the end. The DSC is considered tobe a unique and versatile procedure for modeling behaviors of engineering materials and interfaces. 2016 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. This is an open access article under the CC BY-NC-ND license
文摘Estimation of state-of-charge and state-of-health for batteries is one of the most important feature for modern battery management system(BMS).Robust or adaptive methods are the most investigated because a more intelligent BMS could lead to sensible cost reduction of the entire battery system.We propose a new robust method,called ERMES(extendible range multi-model estimator),for determining an estimated state-of-charge(SoC),an estimated state-of-health(SoH)and a prediction of uncertainty of the estimates(state-of-uncertainty—SoU),thanks to which it is possible to monitor the validity of the estimates and adjust it,extending the robustness against a wider range of uncertainty,if necessary.Specifically,a finite number of models in state-space form are considered starting from a modified Thevenin battery model.Each model is characterized by a hypothesis of SoH value.An iterated extended Kalman filter(EKF)is then applied to each model in parallel,estimating for each one the SoC state variable.Residual errors are then considered to fuse both the estimated SoC and SoH from the bank of EKF,yielding the overall SoC and SoH estimates,respectively.In addition,a figure of uncertainty of such estimates is also provided.
文摘Based on[1],the stress structures of the smooth region and shear lip of the specimens have been investigated in the paper.The characteristics of the stress structure in the smooth region have been found that the variable z can separated out;the stresses in the midsection can be obtained by the plane strain FEM results or HRR structure modified by the stress triaxiality.The effects of load level and thickness on the stress structure can be reflected by the distribution of CTOD along the thickness direction.The obtained expressions of the stresses are very simple and visualized.The analyses of the stress structure in the shear lip show that the stresses can be obtained by different methods of interpolation to a certain precise degree.A new degree parameter of the plane strain state has been put forward and studied.The parameter can reflect relatively well the variation of the kind and thickness of the specimen as well as the load level.The fracture parameter has also been investigated to be sure that it can be obtained by modified CTOD with the stress triaxiality.
基金financial support from the 111 Project (Grant No. B13024)the National Science Foundation of China (Grant Nos. 51509024, 51678094 and 51578096)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848)the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681)
文摘Crushing of grains can greatly influence the strength,dilatancy,and stress-strain relationship of rockfill materials.The critical state line(CSL)in the void ratio versus mean effective stress plane was extended to the breakage critical state plane(BCSP).A state void-ratio-pressure index that incorporated the effect of grain crushing was proposed according to the BCSP.Rowe’s stress-dilatancy equation was modified by adding the breakage voidratio-pressure index,which was also incorporated into the formulations of the bounding stress ratio and plastic modulus.A BCSP-based bounding surface plasticity model was proposed to describe the state-dependent stressstrain behaviors and the evolution of grain crushing during shearing process of rockfill materials,and was shown to sufficiently capture the breakage phenomenon.
基金The National Natural Science Foundation of China(No.51478114,51778136)
文摘To investigate the travel time prediction method of the freeway, a model based on the gradient boosting decision tree (GBDT) is proposed. Eleven variables (namely, travel time in current period T i , traffic flow in current period Q i , speed in current period V i , density in current period K i , the number of vehicles in current period N i , occupancy in current period R i , traffic state parameter in current period X i , travel time in previous time period T i -1 , etc.) are selected to predict the travel time for 10 min ahead in the proposed model. Data obtained from VISSIM simulation is used to train and test the model. The results demonstrate that the prediction error of the GBDT model is smaller than those of the back propagation (BP) neural network model and the support vector machine (SVM) model. Travel time in current period T i is the most important variable among all variables in the GBDT model. The GBDT model can produce more accurate prediction results and mine the hidden nonlinear relationships deeply between variables and the predicted travel time.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX1-YW-12-04,KZCX2-YW-201)the Instrument Developing Project of the Chinese Academy of Sciences (No.YZ200724)
文摘A new ocean wave and sea surface current monitoring system with horizontally-(HH) and vertically-(VV) polarized X-band radar was developed.Two experiments into the use of the radar system were carried out at two sites,respectively,for calibration process in Zhangzi Island of the Yellow Sea,and for validation in the Yellow Sea and South China Sea.Ocean wave parameters and sea surface current velocities were retrieved from the dual polarized radar image sequences based on an inverse method.The results obtained from dual-polarized radar data sets acquired in Zhangzi Island are compared with those from an ocean directional buoy.The results show that ocean wave parameters and sea surface current velocities retrieved from radar image sets are in a good agreement with those observed by the buoy.In particular,it has been found that the vertically-polarized radar is better than the horizontally-polarized radar in retrieving ocean wave parameters,especially in detecting the significant wave height below 1.0 m.
基金supported by Jiangsu Social Science Foundation(No.20GLD008)Science,Technology Projects of Jiangsu Provincial Department of Communications(No.2020Y14)Joint Fund for Civil Aviation Research(No.U1933202)。
文摘In order to directly construct the mapping between multiple state parameters and remaining useful life(RUL),and reduce the interference of random error on prediction accuracy,a RUL prediction model of aeroengine based on principal component analysis(PCA)and one-dimensional convolution neural network(1D-CNN)is proposed in this paper.Firstly,multiple state parameters corresponding to massive cycles of aeroengine are collected and brought into PCA for dimensionality reduction,and principal components are extracted for further time series prediction.Secondly,the 1D-CNN model is constructed to directly study the mapping between principal components and RUL.Multiple convolution and pooling operations are applied for deep feature extraction,and the end-to-end RUL prediction of aeroengine can be realized.Experimental results show that the most effective principal component from the multiple state parameters can be obtained by PCA,and the long time series of multiple state parameters can be directly mapped to RUL by 1D-CNN,so as to improve the efficiency and accuracy of RUL prediction.Compared with other traditional models,the proposed method also has lower prediction error and better robustness.
文摘The phonon dispersion curves (PDC) of Ca70Mg30 metallic glass has been studied at room temperature in terms of phonon eigen frequencies of longitudinal and transverse modes employing three different approaches proposed by Hubbard and Beeby (J. Phys. C: Solid State Phys. 13 (1969) 556), Takeno and Goda (Prog. Theor. Phys. 45 (1971) 331; 47 (1972) 790) and Bhatia and Singh (Phys. Rev. B 31 (1985) 4751). The well recognized model potential of Gajjar et al. is employed successfully to explain electron-ion interaction in the metallic glass. The effective pair potential is used to generate the pair correlation function g(r). The local field correction function (Int. J. Mod. Phys. B 17 (2003) 6001) is used for the first time to introduce the exchange and correlation effects on the aforesaid properties. The present findings of PDCs are found to be in agreement with the available theoretical as well as experimental data. The thermodynamic and elastic properties, i.e. longitudinal and transverse sound velocities, isothermal bulk modulus, modulus of rigidity, Poisson's ratio, Young's modulus and Debye temperature, are also investigated successfully.