The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.B...The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.展开更多
The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also e...The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
Cross-linking of silyl-modified polymers occurs at the alkoxysilane groups attached to the ends of polymer chains by hydrolysis and polycondensation mechanisms in the presence of moisture. During these reactions, thre...Cross-linking of silyl-modified polymers occurs at the alkoxysilane groups attached to the ends of polymer chains by hydrolysis and polycondensation mechanisms in the presence of moisture. During these reactions, three different physical states can be identified (viscous, skin effect and cross-linked state). Knowledge of the evolution of these states at each reaction time is essential to determine the open time for the adhe-sive industry and is generally obtained by a manual method. Automation of this moni-toring could avoid operator error and could be used for very long cross linking reac-tions or to screen a large number of catalysts. Thus, a contactless micro process tech-nology was developed to correlate these physical states with an optical technology, Raman spectroscopy, by monitoring the decrease in intensity of the Si-OCH<sub>3</sub> groups during chemical reactions. This online characterization method can also be used to compare the efficiencies of several catalysts for the cross-linking of silyl-modified polymers, using a minimum amount of chemical materials.展开更多
Electrostatic monitoring technology of particle charging information can facilitate online monitoring of aero-engine,which effectively enhances engine fault diagnosis and health managements.Unlike traditional engine s...Electrostatic monitoring technology of particle charging information can facilitate online monitoring of aero-engine,which effectively enhances engine fault diagnosis and health managements.Unlike traditional engine state monitoring technologies,aircraft engine monitoring by gas path electrostatic monitoring not only covers the predicted information source itself,but also detects the information that can provide an early warnings for initial fault states through gas path charging levels.This paper establishes a non-stationary time sequence change-point model for anomaly recognition of electrostatic signals based on change-point theory combined with difference method of non-stationary time series.Finally,electrostatic induction data were utilized by the engine life test for a particular aircraft to validate the proposed algorithm.The results indicate that the activity level and the event rate were0.5—0.8(nc)and 50%,respectively,which were far greater than 4—12(pc)and 0—4% under normal working conditions of the engine.展开更多
This paper presented a fuzzy Petri net model to deal with the monitoring of robotic assembly. Based on the fuzzy Petri net model, an efficient composite reasoning mode was proposed to perform fuzzy reasoning automatie...This paper presented a fuzzy Petri net model to deal with the monitoring of robotic assembly. Based on the fuzzy Petri net model, an efficient composite reasoning mode was proposed to perform fuzzy reasoning automatiealy. It can determine whether there exists an antecedent-consequence relationship between two contact states. Furthermore, various types of sensor signals can be converted to the same form of real values between zero and one, and the contradiction among large number, high degree of truth and importance of input conditions can be resolved very well by introducing the weight factors and priorities for sensor signals. Finally, a peg- in-the-hole example was given to illustrate the reasonability and feasibility of the proposed model.展开更多
It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to har...It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to harsh operating conditions. These challenges mean there is a requirement for a high degree of maintenance. The data generated by monitoring systems can be used to obtain models of wind turbines operating under different conditions, and hence predict output signals based on known inputs. A model-based condition monitoring system can be implemented by comparing output data obtained from operational turbines with those predicted by the models, so as to detect changes that could be due to the presence of faults. This paper discusses several techniques for model-based condition monitoring systems: linear models, artificial neural networks, and state dependent parameter "pseudo" transfer functions.The models are identified using supervisory control and data acquisition(SCADA) data acquired from an operational wind firm. It is found that the multiple-input single-output state dependent parameter method outperforms both multivariate linear and artificial neural network-based approaches. Subsequently, state dependent parameter models are used to develop adaptive thresholds for critical output signals. In order to provide an early warning of a developing fault, it is necessary to interpret the amount by which the threshold is exceeded, together with the period of time over which this occurs. In this regard, a fuzzy logic-based inference system is proposed and demonstrated to be practically feasible.展开更多
Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous sta...Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.展开更多
Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscilla...Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.展开更多
基金supported by National Natural Science Foundation of China(No.51275052)Beijing Natural Science Foundation(No.3131002)
文摘The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.62371187the Hunan Provincial Natural Science Foundation of China under Grant Nos.2024JJ8309 and 2023JJ50495.
文摘The integration of cloud computing into traditional industrial control systems is accelerating the evolution of Industrial Cyber-Physical System(ICPS),enhancing intelligence and autonomy.However,this transition also expands the attack surface,introducing critical security vulnerabilities.To address these challenges,this article proposes a hybrid intrusion detection scheme for securing ICPSs that combines system state anomaly and network traffic anomaly detection.Specifically,an improved variation-Bayesian-based noise covariance-adaptive nonlinear Kalman filtering(IVB-NCA-NLKF)method is developed to model nonlinear system dynamics,enabling optimal state estimation in multi-sensor ICPS environments.Intrusions within the physical sensing system are identified by analyzing residual discrepancies between predicted and observed system states.Simultaneously,an adaptive network traffic anomaly detection mechanism is introduced,leveraging learned traffic patterns to detect node-and network-level anomalies through pattern matching.Extensive experiments on a simulated network control system demonstrate that the proposed framework achieves higher detection accuracy(92.14%)with a reduced false alarm rate(0.81%).Moreover,it not only detects known attacks and vulnerabilities but also uncovers stealthy attacks that induce system state deviations,providing a robust and comprehensive security solution for the safety protection of ICPS.
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.
文摘Cross-linking of silyl-modified polymers occurs at the alkoxysilane groups attached to the ends of polymer chains by hydrolysis and polycondensation mechanisms in the presence of moisture. During these reactions, three different physical states can be identified (viscous, skin effect and cross-linked state). Knowledge of the evolution of these states at each reaction time is essential to determine the open time for the adhe-sive industry and is generally obtained by a manual method. Automation of this moni-toring could avoid operator error and could be used for very long cross linking reac-tions or to screen a large number of catalysts. Thus, a contactless micro process tech-nology was developed to correlate these physical states with an optical technology, Raman spectroscopy, by monitoring the decrease in intensity of the Si-OCH<sub>3</sub> groups during chemical reactions. This online characterization method can also be used to compare the efficiencies of several catalysts for the cross-linking of silyl-modified polymers, using a minimum amount of chemical materials.
基金supported by the Initial Scientific Research Fund (No.2015QD02S)the Foundation Research Funds for the Central Universities (No.3122016A004, 3122017027)
文摘Electrostatic monitoring technology of particle charging information can facilitate online monitoring of aero-engine,which effectively enhances engine fault diagnosis and health managements.Unlike traditional engine state monitoring technologies,aircraft engine monitoring by gas path electrostatic monitoring not only covers the predicted information source itself,but also detects the information that can provide an early warnings for initial fault states through gas path charging levels.This paper establishes a non-stationary time sequence change-point model for anomaly recognition of electrostatic signals based on change-point theory combined with difference method of non-stationary time series.Finally,electrostatic induction data were utilized by the engine life test for a particular aircraft to validate the proposed algorithm.The results indicate that the activity level and the event rate were0.5—0.8(nc)and 50%,respectively,which were far greater than 4—12(pc)and 0—4% under normal working conditions of the engine.
基金Sponsored by the National High Technology Research and Development Prgram of China(Grant No2001AA42250)
文摘This paper presented a fuzzy Petri net model to deal with the monitoring of robotic assembly. Based on the fuzzy Petri net model, an efficient composite reasoning mode was proposed to perform fuzzy reasoning automatiealy. It can determine whether there exists an antecedent-consequence relationship between two contact states. Furthermore, various types of sensor signals can be converted to the same form of real values between zero and one, and the contradiction among large number, high degree of truth and importance of input conditions can be resolved very well by introducing the weight factors and priorities for sensor signals. Finally, a peg- in-the-hole example was given to illustrate the reasonability and feasibility of the proposed model.
基金supported by the UK Engineering and Physical Sciences Research Council(EPSRC)(No.EP/I037326/1)
文摘It is common for wind turbines to be installed in remote locations on land or offshore, leading to difficulties in routine inspection and maintenance. Further, wind turbines in these locations are often subject to harsh operating conditions. These challenges mean there is a requirement for a high degree of maintenance. The data generated by monitoring systems can be used to obtain models of wind turbines operating under different conditions, and hence predict output signals based on known inputs. A model-based condition monitoring system can be implemented by comparing output data obtained from operational turbines with those predicted by the models, so as to detect changes that could be due to the presence of faults. This paper discusses several techniques for model-based condition monitoring systems: linear models, artificial neural networks, and state dependent parameter "pseudo" transfer functions.The models are identified using supervisory control and data acquisition(SCADA) data acquired from an operational wind firm. It is found that the multiple-input single-output state dependent parameter method outperforms both multivariate linear and artificial neural network-based approaches. Subsequently, state dependent parameter models are used to develop adaptive thresholds for critical output signals. In order to provide an early warning of a developing fault, it is necessary to interpret the amount by which the threshold is exceeded, together with the period of time over which this occurs. In this regard, a fuzzy logic-based inference system is proposed and demonstrated to be practically feasible.
基金supported by the National Natural Science Foundation of China(62403393,12202058,62103118)the China Postdoctoral Science Foundation(2021T140160,2023 T160051)the Natural Science Foundation of Chongqing(CSTB 2023NSCQ-MSX0152)
文摘Dear Editor,This letter deals with the stabilization problem of nonlinear stochastic systems via self-triggered impulsive control(STIC), where the timing of impulsive control actions is not dependent on continuous state monitoring. In contrast to the existing self-triggered control method, novel self-triggered mechanism(STM) is proposed by incorporating a waiting time for stabilizing impulses. This allows for direct prediction of the next impulsive instant.
文摘Experimental and theoretical studies of the mechanisms of vibration stimulation of oil recovery in watered fields lead to the conclusion that resonance oscillations develop in fractured-block formations. These oscillations, caused by weak but long-lasting and frequency-stable influences, create the conditions for ultrasonic wave’s generation in the layers, which are capable of destroying thickened oil membranes in reservoir cracks. For fractured-porous reservoirs in the process of exploitation by the method of water high-pressure oil displacement, the possibility of intensifying ultrasonic vibrations can have an important technological significance. Even a very weak ultrasound can destroy, over a long period of time, the viscous oil membranes formed in the cracks between the blocks, which can be the reason for lowering the permeability of the layers and increasing the oil recovery. To describe these effects, it is necessary to consider the wave process in a hierarchically blocky environment and theoretically simulate the mechanism of the appearance of self-oscillations under the action of relaxation shear stresses. For the analysis of seism acoustic response in time on fixed intervals along the borehole an algorithm of phase diagrams of the state of many-phase medium is suggested.