Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization...Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.展开更多
Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the...Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.展开更多
Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency devia...Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.展开更多
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved D...In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.展开更多
Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic effici...Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.展开更多
As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given m...As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.展开更多
To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hyb...To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.展开更多
The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS ...The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.展开更多
The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,...The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.展开更多
Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationship...Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.展开更多
The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed G...The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed Goliath is defeated by the comparatively puny David,who comes to the battle with only his staff and sling.展开更多
数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数...数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数,通过添加列选择调用自定义函数,实现多页面Web数据源的连接与获取。接着,通过数据转换功能执行字段提取与数据类型转换,最终得到包含电影排名、名称、评分和上映年份等关键字段的数据表。最后,基于250部电影的评分数据创建数据可视化内容,包括柱形图、电影得分切片器及影片信息矩阵表格,根据电影评分数据为柱形图设置颜色递进效果,对切片器和影片信息矩阵表格添加联动效应,达到交互式的效果。展开更多
文摘Space-Based Solar Power(SBSP) presents a promising solution for achieving carbon neutrality and Renewable Electricity 100%(RE100) goals by offering a stable and continuous energy supply. However, its commercialization faces significant obstacles due to the technical challenges of long-distance microwave Wireless Power Transmission(WPT) from geostationary orbit. Even ground-based kilometer-scale WPT experiments remain difficult because of limited testing infrastructure, high costs, and strict electromagnetic wave regulations. Since the 1975 NASA-Raytheon experiment, which successfully recovered 30 kW of power over 1.55 km, there has been little progress in extending the transmission distance or increasing the retrieved power. This study proposes a cost-effective methodology for conducting long-range WPT experiments in constrained environments by utilizing existing infrastructure. A deep space antenna operating at 2.08 GHz with an output power of 2.3 kW and a gain of 55.3 dBi was used as the transmitter. Two test configurations were implemented: a 1.81 km ground-to-air test using an aerostat to elevate the receiver and a 1.82 km ground-to-ground test using a ladder truck positioned on a plateau. The rectenna consists of a lightweight 3×3 patch antenna array(0.9 m × 0.9 m), accompanied by a steering device and LED indicators to verify power reception. The aerostat-based test achieved a power density of 154.6 mW/m2, which corresponds to approximately 6.2% of the theoretical maximum. The performance gap is primarily attributed to near-field interference, detuning of the patch antenna, rectifier mismatch, and alignment issues. These limitations are expected to be mitigated through improved patch antenna fabrication, a transition from GaN to GaAs rectifiers optimized for lower input power, and the implementation of an automated alignment system. With these enhancements, the recovered power is expected to improve by approximately four to five times. The results demonstrate a practical and scalable framework for long-range WPT experiments under constrained conditions and provide key insights for advancing SBSP technology.
基金supported by the Science and Technology Project of Sichuan Electric Power Company“Power Supply Guarantee Strategy for Urban Distribution Networks Considering Coordination with Virtual Power Plant during Extreme Weather Event”(No.521920230003).
文摘Ensuring reliable power supply in urban distribution networks is a complex and critical task.To address the increased demand during extreme scenarios,this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants(VPPs).The proposed strategy improves systemflexibility and responsiveness by optimizing the power adjustment of flexible resources.In the proposed strategy,theGaussian Process Regression(GPR)is firstly employed to determine the adjustable range of aggregated power within the VPP,facilitating an assessment of its potential contribution to power supply support.Then,an optimal dispatch model based on a leader-follower game is developed to maximize the benefits of the VPP and flexible resources while guaranteeing the power balance at the same time.To solve the proposed optimal dispatch model efficiently,the constraints of the problem are reformulated and resolved using the Karush-Kuhn-Tucker(KKT)optimality conditions and linear programming duality theorem.The effectiveness of the strategy is illustrated through a detailed case study.
基金the Deanship of Scientific Research at Northern Border University,Arar,Saudi Arabia,for funding this research work through the project number“NBU-FFR-2025-3623-11”.
文摘Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization.However,the high penetration of intermittent renewable sources often causes frequency deviations,voltage fluctuations,and poor reactive power coordination,posing serious challenges to grid stability.Conventional Interconnection FlowControllers(IFCs)primarily regulate active power flowand fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks.To overcome these limitations,this study proposes an enhanced Interconnection Flow Controller(e-IFC)that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller(IRFC)within a unified adaptive control structure.The proposed e-IFC is implemented and analyzed in DIgSILENT PowerFactory to evaluate its performance under various grid disturbances,including frequency drops,load changes,and reactive power fluctuations.Simulation results reveal that the e-IFC achieves 27.4% higher active power sharing accuracy,19.6% lower reactive power deviation,and 18.2% improved frequency stability compared to the conventional IFC.The adaptive controller ensures seamless transitions between grid-connected and islanded modes and maintains stable operation even under communication delays and data noise.Overall,the proposed e-IFCsignificantly enhances active-reactive power coordination and dynamic stability in renewable-integrated multi-microgrid systems.Future research will focus on coupling the e-IFC with tertiary-level optimization frameworks and conducting hardware-in-the-loop validation to enable its application in large-scale smart microgrid environments.
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金funded by the Institute of Smart Energy,Huaiyin Institute of Technology,under Grant No.HIT-ISE-2024-07.
文摘In order to address environmental pollution and resource depletion caused by traditional power generation,this paper proposes an adaptive iterative dynamic-balance optimization algorithm that integrates the Improved Dung Beetle Optimizer(IDBO)with VariationalMode Decomposition(VMD).The IDBO-VMD method is designed to enhance the accuracy and efficiency of wind-speed time-series decomposition and to effectively smooth photovoltaic power fluctuations.This study innovatively improves the traditional variational mode decomposition(VMD)algorithm,and significantly improves the accuracy and adaptive ability of signal decomposition by IDBO selfoptimization of key parameters K and a.On this basis,Fourier transform technology is used to define the boundary point between high frequency and low frequency signals,and a targeted energy distribution strategy is proposed:high frequency fluctuations are allocated to supercapacitors to quickly respond to transient power fluctuations;Lowfrequency components are distributed to lead-carbon batteries,optimizing long-term energy storage and scheduling efficiency.This strategy effectively improves the response speed and stability of the energy storage system.The experimental results demonstrate that the IDBO-VMD algorithm markedly outperforms traditional methods in both decomposition accuracy and computational efficiency.Specifically,it effectively reduces the charge–discharge frequency of the battery,prolongs battery life,and optimizes the operating ranges of the state-of-charge(SOC)for both leadcarbon batteries and supercapacitors.In addition,the energy management strategy based on the algorithm not only improves the overall energy utilization efficiency of the system,but also shows excellent performance in the dynamic management and intelligent scheduling of renewable energy generation.
基金funded by the Department of Education of Liaoning Province and was supported by the Basic Scientific Research Project of the Department of Education of Liaoning Province(Grant No.LJ222411632051)and(Grant No.LJKQZ2021085)Natural Science Foundation Project of Liaoning Province(Grant No.2022-BS-222).
文摘Virtual power plant(VPP)integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions,promote the consumption of renewable energy,and improve economic efficiency.In this paper,aiming at the uncertainty of distributed wind power and photovoltaic output,considering the coupling relationship between power,carbon trading,and green cardmarket,the optimal operationmodel and bidding scheme of VPP in spot market,carbon trading market,and green card market are established.On this basis,through the Shapley value and independent risk contribution theory in cooperative game theory,the quantitative analysis of the total income and risk contribution of various distributed resources in the virtual power plant is realized.Moreover,the scheduling strategies of virtual power plants under different risk preferences are systematically compared,and the feasibility and accuracy of the combination of Shapley value and independent risk contribution theory in ensuring fair income distribution and reasonable risk assessment are emphasized.A comprehensive solution for virtual power plants in the multi-market environment is constructed,which integrates operation strategy,income distribution mechanism,and risk control system into a unified analysis framework.Through the simulation of multi-scenario examples,the CPLEXsolver inMATLAB software is used to optimize themodel.The proposed joint optimization scheme can increase the profit of VPP participating in carbon trading and green certificate market by 29%.The total revenue of distributed resources managed by VPP is 9%higher than that of individual participation.
文摘As a Burundian doctoral student at Nanjing University,my personal journey is closely intertwined with China’s development in the new era and the deepening China-Africa partnership.Recently,my experiences have given me a deeper appreciation of the importance of people-to-people exchanges between China and Africa.
基金supported by Science and Technology Project of the headquarters of the State Grid Corporation of China(No.5500-202324492A-3-2-ZN).
文摘To enhance power flow regulation in scenarios involving large-scale renewable energy transmission via high-voltage direct current(HVDC)links and multi-infeed DC systems in load-center regions,this paper proposes a hybrid modular multilevel converter–capacitor-commutated line-commutated converter(MMC-CLCC)HVDC transmission system and its corresponding control strategy.First,the system topology is constructed,and a submodule configuration method for the MMC—combining full-bridge submodules(FBSMs)and half-bridge submodules(HBSMs)—is proposed to enable direct power flow reversal.Second,a hierarchical control strategy is introduced,includingMMCvoltage control,CLCC current control,and a coordinationmechanism,along with the derivation of the hybrid system’s power flow reversal characteristics.Third,leveraging the CLCC’s fast current regulation and theMMC’s negative voltage control capability,a coordinated power flow reversal control strategy is developed.Finally,an 800 kV MMC-CLCC hybrid HVDC system is modeled in PSCAD/EMTDC to validate the power flow reversal performance under a high proportion of full-bridge submodule configuration.Results demonstrate that the proposed control strategy enables rapid(1-s transition)and smooth switching of bidirectional power flow without modifying the structure of primary equipment:the transient fluctuation ofDC voltage from the rated value(UdcN)to themaximumreverse voltage(-kUdcN)is less than 5%;the DC current strictly follows the preset characteristic curve with a deviation of≤3%;the active power reverses continuously,and the system maintains stable operation throughout the reversal process.
文摘The problems including excessive flow of attemperating water for boiler, failure of butterfly valve at the outlet of circulating water pump, burnt-out of thyristor for excitation regulator, load variation rate of CCS not complying with the contract target, etc. occurred during start-up and debugging of two 600 MW generating units in Yangzhou No.2 Thermal Power Plant. Through analysis on these problems. the remedial measures were put forward, to which can be referred for similar units.
基金supported by the State Grid Corporation of China Science and Technology Project,grant number 52270723000900K.
文摘The new energy power generation is becoming increasingly important in the power system.Such as photovoltaic power generation has become a research hotspot,however,due to the characteristics of light radiation changes,photovoltaic power generation is unstable and random,resulting in a low utilization rate and directly affecting the stability of the power grid.To solve this problem,this paper proposes a coordinated control strategy for a newenergy power generation system with a hybrid energy storage unit based on the lithium iron phosphate-supercapacitor hybrid energy storage unit.Firstly,the variational mode decomposition algorithm is used to separate the high and low frequencies of the power signal,which is conducive to the rapid and accurate suppression of the power fluctuation of the energy storage system.Secondly,the fuzzy control algorithm is introduced to balance the power between energy storage.In this paper,the actual data is used for simulation,and the simulation results show that the strategy realizes the effective suppression of the bus voltage fluctuation and the accurate control of the internal state of the energy storage unit,effectively avoiding problems such as overshoot and over-discharge,and can significantly improve the stability of the photovoltaic power generation systemand the stability of the Direct Current bus.It is of great significance to promote the development of collaborative control technology for photovoltaic hybrid energy storage units.
基金funded by the Inner Mongolia Nature Foundation Project,Project number:2023JQ04.
文摘Power quality is a crucial area of research in contemporary power systems,particularly given the rapid proliferation of intermittent renewable energy sources such as wind power.This study investigated the relationships between power quality indices of system output and PSD by utilizing theories related to spectra,PSD,and random signal power spectra.The relationship was derived,validated through experiments and simulations,and subsequently applied to multi-objective optimization.Various optimization algorithms were compared to achieve optimal system power quality.The findings revealed that the relationships between power quality indices and PSD were influenced by variations in the order of the power spectral estimation model.An increase in the order of the AR model resulted in a 36%improvement in the number of optimal solutions.Regarding optimal solution distribution,NSGA-II demonstrated superior diversity,while MOEA/D exhibited better convergence.However,practical applications showed that while MOEA/D had higher convergence,NSGA-II produced superior optimal solutions,achieving the best power quality indices(THDi at 4.62%,d%at 3.51%,and cosφat 96%).These results suggest that the proposed method holds significant potential for optimizing power quality in practical applications.
文摘The release of a new artificial intelligence(AI)model,ironically,evokes a biblical memory.What has transpired in the past few days echoes the biblical story of David versus Goliath,in which the massive and wellarmed Goliath is defeated by the comparatively puny David,who comes to the battle with only his staff and sling.
文摘数据可视化的完整流程包括数据采集、数据处理、数据分析及数据可视化4个环节。该文展示使用Power BI Desktop对豆瓣电影TOP250评分数据,进行多页面Web获取、处理及可视化展示的应用案例。首先,使用Power BI Desktop的M语言创建查询函数,通过添加列选择调用自定义函数,实现多页面Web数据源的连接与获取。接着,通过数据转换功能执行字段提取与数据类型转换,最终得到包含电影排名、名称、评分和上映年份等关键字段的数据表。最后,基于250部电影的评分数据创建数据可视化内容,包括柱形图、电影得分切片器及影片信息矩阵表格,根据电影评分数据为柱形图设置颜色递进效果,对切片器和影片信息矩阵表格添加联动效应,达到交互式的效果。