This article is concerned with blow-up solutions of the Cauchy problem of critical nonlinear SchrSdinger equation with a Stark potential. By using the variational characterization of corresponding ground state, the li...This article is concerned with blow-up solutions of the Cauchy problem of critical nonlinear SchrSdinger equation with a Stark potential. By using the variational characterization of corresponding ground state, the limiting behavior of blow-up solutions with critical and small super-critical mass are obtained in the natural energy space ∑ = {u ∈ H^1; fRN |x|^2|u|^2dx 〈 +∞)}. Moreover, an interesting concentration property of the blow-up solutions with critical mass is gotten, which reads that |u(t, x)|^2→ ||Q||L^2 2 δx=x1 as t → T.展开更多
基金Supported by National Science Foundation of China (11071177)Excellent Youth Foundation of Sichuan Province (2012JQ0011)
文摘This article is concerned with blow-up solutions of the Cauchy problem of critical nonlinear SchrSdinger equation with a Stark potential. By using the variational characterization of corresponding ground state, the limiting behavior of blow-up solutions with critical and small super-critical mass are obtained in the natural energy space ∑ = {u ∈ H^1; fRN |x|^2|u|^2dx 〈 +∞)}. Moreover, an interesting concentration property of the blow-up solutions with critical mass is gotten, which reads that |u(t, x)|^2→ ||Q||L^2 2 δx=x1 as t → T.