It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It ...It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.展开更多
Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character...Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model.However,limiting their ability to serve in this role,recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton,pion,kaon,and deuteron.In the context of radius measurement using electron+hadron elastic scattering,the past decade has shown that reliable extraction requires minimisation of bias associated with practitioner-dependent choices of data fitting functions.Different answers to that challenge have been offered;and this perspective describes the statistical Schlessinger point method(SPM),in unifying applications to proton,pion,kaon,and deuteron radii.Grounded in analytic function theory,independent of assumptions about underlying dynamics,free from practitioner-induced bias,and applicable in the same form to diverse systems and observables,the SPM returns an objective expression of the information contained in any data under consideration.Its robust nature and versatility make it suitable for use in many branches of experiment and theory.展开更多
文摘It is the current belief of the Physics Community that neutrinos are bereft of Charge because of Conservation of Charge in decay processes such as Beta Decay and are point particles with no physical size or shape. It is the purpose of this paper to calculate the charges and the size of the electron neutrino, the muon neutrino, and the tau neutrino based on data available of their rest masses using the charges and rest masses of the electron, muon, and tau leptons from the Standard Model of Particle Physics Table. We base our calculations on the premise that Energy can create both Mass and Charge. Charge by itself is not conserved in any process that produces neutrinos. Only Total Energy is conserved.
基金Supported by the National Natural Science Foundation of China(12135007)Natural Science Foundation of Jiangsu Province(BK20220122)STRONG-2020"The strong interaction at the frontier of knowledge:fundamental research and applications"which received funding from the European Union's Horizon 2020 research and innovation programme(824093)。
文摘Conceptually,radii are amongst the simplest Poincaré-invariant properties that can be associated with hadrons and light nuclei.Accurate values of these quantities are necessary so that one may judge the character of putative solutions to the strong interaction problem within the Standard Model.However,limiting their ability to serve in this role,recent measurements and new analyses of older data have revealed uncertainties and imprecisions in the radii of the proton,pion,kaon,and deuteron.In the context of radius measurement using electron+hadron elastic scattering,the past decade has shown that reliable extraction requires minimisation of bias associated with practitioner-dependent choices of data fitting functions.Different answers to that challenge have been offered;and this perspective describes the statistical Schlessinger point method(SPM),in unifying applications to proton,pion,kaon,and deuteron radii.Grounded in analytic function theory,independent of assumptions about underlying dynamics,free from practitioner-induced bias,and applicable in the same form to diverse systems and observables,the SPM returns an objective expression of the information contained in any data under consideration.Its robust nature and versatility make it suitable for use in many branches of experiment and theory.