期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Quantifying the strengthening effect of stacking faults in a nonequiatomic CoCrNi alloy 被引量:1
1
作者 Z.Y.Ni Z.Y.Li +1 位作者 S.Y.Peng Y.Z.Tian 《Journal of Materials Science & Technology》 2025年第18期321-326,共6页
1.Introduction The strength of metallic materials can be ameliorated by introducing boundaries,precipitates,or defects as obstacles to dislocation movement[1].However,high strength is generally obtained at the sacrifi... 1.Introduction The strength of metallic materials can be ameliorated by introducing boundaries,precipitates,or defects as obstacles to dislocation movement[1].However,high strength is generally obtained at the sacrifice of plastic deformation capability[2].Lately,many strategies have been proposed to improve the comprehensive properties of materials,among which manipulating stacking fault energy(SFE)is effective[3–5]. 展开更多
关键词 nonequiatomic CoCrNi alloy metallic materials plastic deformation capability latelymany dislocation movement howeverhigh stacking faults improve comprehensive properties plastic deformation material strength
原文传递
Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults 被引量:12
2
作者 Kang Wei Lirong Xiao +6 位作者 Bo Gao Lei Li Yi Liu Zhigang Ding Wei Liu Hao Zhou Yonghao Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1221-1227,共7页
Due to the insufficient slip systems,Mg and its alloys exhibit poor ductility during plastic deformation at room temperature.To solve this problem,alloying is considered as a most effective method to improve the ducti... Due to the insufficient slip systems,Mg and its alloys exhibit poor ductility during plastic deformation at room temperature.To solve this problem,alloying is considered as a most effective method to improve the ductility of Mg alloys,which attracts wide attentions of industries.However,it is still a challenge to understand the ductilization mechanism,because of the complicated alloying elements and their interactions with Mg matrix.In this work,pure Mg and Mg-Y alloys were comparatively studied to investigate the effect of Y addition on microstructure evolution and mechanical properties.A huge increase of uniform elongation,from 5.3%to 20.7%,was achieved via only 3 wt%addition of yttrium.TEM results revealed that the only activated slip system in pure Mg was basalslip,led to its poor ductility at room temperature.In contrast,a large number of stacking faults and non-basal dislocations with<c>component were observed in the deformed Mg-Y alloy,which was proposed as the main reason for significant improvement of strain hardening and ductility.High resolution TEM indicated that most of the stacking faults were II and 12 intrinsic faults,which played a critical role in improving the ductility of Mg-Y alloy.Addition of Y into Mg alloy decreased the stacking fault energy,which induced high density stacking faults in the grain interior. 展开更多
关键词 Magnesium alloys DUCTILITY stacking faults Non-basal slip Transmission electron microscopy
在线阅读 下载PDF
Corrosion behavior of Mg-3Gd-1Zn-0.4Zr alloy with and without stacking faults 被引量:6
3
作者 Xiaobo Zhang Jianwei Dai +2 位作者 Ruifeng Zhang Zhixin Ba Nick Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第2期240-248,共9页
To develop biodegradable magnesium alloy with desirable corrosion properties,a low Gd-containing Mg-3Gd-1Zn-0.4Zr(wt%,GZ31K)alloy was prepared.The as-cast ingot was solution treated and then hot extruded.Microstructur... To develop biodegradable magnesium alloy with desirable corrosion properties,a low Gd-containing Mg-3Gd-1Zn-0.4Zr(wt%,GZ31K)alloy was prepared.The as-cast ingot was solution treated and then hot extruded.Microstructures were characterized by scanning electron microscopy(SEM).Corrosion behavior of the alloy under each condition was studied by hydrogen evolution and quasi in-situ corrosion methods.It has been found that the as-cast alloy is composed ofα-Mg,stacking faults(SFs)at the outer edge of the matrix grains,and eutectic phase along the grain boundaries.After solution treatment,the SFs disappear and precipitates rich in Zn and Zr elements form in the grain interior and boundaries.The microstructure is significantly refined after extrusion.Hydrogen evolution tests show that the as-cast alloy exhibits the best corrosion resistance,and the solution-treated alloy has the worst corrosion resistance.Corrosion rate of the alloy under each condition decreases first and then increases with prolonging immersion time.Corrosion experiments demonstrate thatα-Mg was corroded preferentially,the eutectic phase and precipitates exhibit better corrosion resistance.The as-extruded alloy demonstrates uniform corrosion due to fine and homogeneous microstructure. 展开更多
关键词 Magnesium alloys stacking faults Corrosion resistance Uniform corrosion
在线阅读 下载PDF
Formation mechanism of partial stacking faults by incompletemixed-mode phase transformation: A case study of Fe-Ga alloys
4
作者 Tianzi Yang Tianyu Ma +1 位作者 Feng Liu Xiaobing Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第22期59-64,共6页
Partial stacking faults(PSFs) formed by incomplete mixed-mode phase transformation have been found to exhibit unfixed slip distance of closely-packed planes unlike those of the deformation-induced stacking faults(SFs)... Partial stacking faults(PSFs) formed by incomplete mixed-mode phase transformation have been found to exhibit unfixed slip distance of closely-packed planes unlike those of the deformation-induced stacking faults(SFs) with fixed distance. Though engineering PSFs can yield appealing properties, such as the enhanced damping capacity, understanding of the interaction between lattice distortion and atomic diffusion and their influences on forming PSFs is still far from being clear. Herein we performed a case study on aged Fe-Ga alloy that undergoes a mixed-mode phase transformation from body-centered cubic(BCC)to ordered face-centered cubic(FCC). The TEM investigations showed that the faulted {111}-FCC distance of the PSFs is shorter than a/6<112> of the typical {111}-<112> SFs in deformed FCC materials and the PSFs have disordered Fe and Ga arrangements. Further studies revealed that such PSFs will not be completely dissociated at FCC twin boundaries(TBs) even after long term isothermal aging. Consequently,the formation of PSFs can be ascribed to the transformation-dependent atomic ordering and lattice shear strain of the parent BCC lattice, where the diffusion-controlled glides of the PSFs-associated dislocations will accelerate atomic diffusions due to the dislocation-pipe effect along <112>-FCC direction, but may hinder the atomic diffusions across the {111}-FCC TBs due to the retarding effect. This study may add important insight into the defects process during mixed-mode phase transformation and broaden the knowledge of the interaction between concurrently-happened lattice distortion and atomic diffusion. 展开更多
关键词 stacking faults Mixed-mode phase transformation DIFFUSION Lattice distortion Fe-Ga alloy
原文传递
Formation of Sub-grain Structure Induced by Composition Segregation and Stacking Faults in Laser-Deposited Premixed Near-αTitanium Alloy and Ti_(2)AlNb Alloy Powders
5
作者 Liu Na Zhao Zhanglong +6 位作者 Liu Yuli Feng Kaikai Zha Xiaohui Li Pu Xu Wenxin Yang Haiou Lai Yunjin 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第12期3281-3290,共10页
Near-αtitanium alloy and Ti_(2)AlNb alloy powders premixed with different proportions were prepared on the near-αtitanium alloy substrate by laser deposition technique,and the microstructure characteristics were ana... Near-αtitanium alloy and Ti_(2)AlNb alloy powders premixed with different proportions were prepared on the near-αtitanium alloy substrate by laser deposition technique,and the microstructure characteristics were analyzed and discussed.Results show that numerous river-like sub-grain structures are formed inside the equiaxed B2 grains of the laser-deposited premixed titanium alloy powders with the proportion of Ti_(2)AlNb above 40wt%,whereas the needle-like structure within coarse columnarβgrains exist with the proportion of Ti_(2)AlNb below 40wt%.It is noteworthy that the decrease in laser power and scanning speed can accelerate the formation of sub-grain structures.Based on the analysis of experimental results,it can be inferred that the formation of sub-grain structure not only is related to the precipitation of O phase due to composition micro-segregation at sub-grain boundaries,but also is inseparable from the stacking faults caused by the internal stress during the laser deposition. 展开更多
关键词 laser deposition premixed titanium alloy powders sub-grain structure composition segregation stacking faults
原文传递
Cooperative structure of Li/Ni mixing and stacking faults for achieving high-capacity Co-free Li-rich oxides
6
作者 Zhen Wu Yu-Han Zhang +9 位作者 Hao Wang Zewen Liu Xudong Zhang Xin Dai Kunyang Zou Xiaoming Lou Xuechen Hu Lijing Ma Yan Liu Yongning Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期315-324,I0007,共11页
Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electroche... Co-free Li-rich layered oxides(LLOs)are emerging as promising cathode materials for Li-ion batteries due to their low cost and high capacity.However,they commonly face severe structural instability and poor electrochemical activity,leading to diminished capacity and voltage performance.Herein,we introduce a Co-free LLO,Li_(1.167)Ni_(0.222)Mn_(0.611)O_(2)(Cf-L1),which features a cooperative structure of Li/Ni mixing and stacking faults.This structure regulates the crystal and electronic structures,resulting in a higher discharge capacity of 300.6 mA h g^(-1)and enhanced rate capability compared to the typical Co-free LLO,Li_(1.2)Ni_(0.2)Mn_(0.6)O_(2)(Cf-Ls).Density functional theory(DFT)indicates that Li/Ni mixing in LLOs leads to increased Li-O-Li configurations and higher anionic redox activities,while stacking faults further optimize the electronic interactions of transition metal(TM)3d and non-bonding O 2p orbitals.Moreover,stacking faults accommodate lattice strain,improving electrochemical reversibility during charge/discharge cycles,as demonstrated by the in situ XRD of Cf-L1 showing less lattice evolution than Cf-Ls.This study offers a structured approach to developing Co-free LLOs with enhanced capacity,voltage,rate capability,and cyclability,significantly impacting the advancement of the next-generation Li-ion batteries. 展开更多
关键词 Co-free Li-rich oxides Li/Ni mixing stacking faults Electronic structure
在线阅读 下载PDF
Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-xNd-0.4Zr alloys with stacking faults 被引量:5
7
作者 Lixin Hong Rongxiang Wang Xiaobo Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第8期1570-1577,共8页
In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys,the microstruc-ture and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr(x=0,0.5wt%,and 1wt%)all... In order to study the effects of Nd addition on microstructure and mechanical properties of Mg-Gd-Zn-Zr alloys,the microstruc-ture and mechanical properties of the as-cast Mg-12Gd-2Zn-xNd-0.4Zr(x=0,0.5wt%,and 1wt%)alloys were investigated by using optical microscope,scanning electron microscope,X-ray diffractometer,nano indentation tester,microhardness tester,and tensile testing machine.The results show that the microstructures mainly consist ofα-Mg matrix,eutectic phase,and stacking faults.The addition of Nd plays a significant role in grain refinement and uniform microstructure.The tensile yield strength and microhardness increase but the compression yield strength decreases with increasing Nd addition,leading to weakening tension-compression yield asymmetry in reverse of the Mg-12Gd-2Zn-xNd-0.4Zr alloys.The highest ultimate tensile strength(194 MPa)and ultimate compression strength(397 MPa)are obtained with 1wt%Nd addition of the alloy. 展开更多
关键词 magnesium alloy NEODYMIUM microstructure stacking fault mechanical properties
在线阅读 下载PDF
Effects of twin and stacking faults on the deformation behaviors of Al nanowires under tension loading 被引量:2
8
作者 安敏荣 宋海洋 苏锦芳 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期349-354,共6页
The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic(MD) simulation method.The result shows that the yield streng... The effects of twin spacing and temperature on the deformation behavior of nanotwinned Al under tensile loading are investigated using a molecular dynamic(MD) simulation method.The result shows that the yield strength of nanotwinned Al decreases with the increase of twin spacing,which is related to the repulsive force between twin boundary and the dislocation.The result also shows that there is no strain-hardening at the yield point.On the contrary,the stress is raised by strain hardening in the plastic stage.In addition,we also investigate the effects of stacking fault thickness and temperature on the yield strength of the Al nanowire.The simulation results indicate that the stacking fault may strengthen the Al nanowire when the thickness of the stacking fault is below a critical value. 展开更多
关键词 molecular dynamic simulation deformation twin stacking fault
原文传递
Improving the strength-ductility of laser powder bed fusion René104 through high-density stacking faults induced by Sc and Y microalloying
9
作者 Yazhou Zhang Zuming Liu +4 位作者 Daoyan Jiang Shupeng Ye Tao Liu Lei Chen Cai Chen 《Journal of Materials Science & Technology》 CSCD 2024年第25期161-172,共12页
Improving the strength-ductility is crucial to the development of high-performance nickel-based super-alloys fabricated via additive manufacturing(AM).In this study,Sc and Y microalloying is used to regu-late the micr... Improving the strength-ductility is crucial to the development of high-performance nickel-based super-alloys fabricated via additive manufacturing(AM).In this study,Sc and Y microalloying is used to regu-late the microstructure and improve the strength-ductility of René104 supealloy(René104ScY).The re-sults suggest the formation of high-density stacking faults(SFs),Lomer-Cottrell locks,and nano-Al_(3)(Sc,Y)phases in the René104ScY matrix.The cellular/columnar structures are refined,the number of equiax-ial grains increases,and the number of columnar grains and their aspect ratio decrease in René104ScY.The synergistic effect of multiple strengthening mechanisms,including that formed by SFs,improves the strength and ductility of René104ScY fabricated via laser powder bed fusion.The yield strength,tensile strength,and elongation of René104ScY are 1059±15 MPa,1405±10 MPa,and 28.8%±0.6%,respec-tively.This study provides a novel approach for developing high-performance nickel-based superalloys using AM. 展开更多
关键词 Nickel-based superalloy Laser powder bed fusion MICROALLOYING stacking fault Strengthening mechanism
原文传递
Simultaneously improving intermediate-temperature strength and ductility of Ni-Co-based superalloy by tailoring high-density stacking faults
10
作者 Yu-bi GAO Xing-mao WANG +6 位作者 Jia-yu XU Bo LIU Bing ZHEN Yu-tian DING Bin GAN Ting-biao GUO Jun-zhao LIU 《Transactions of Nonferrous Metals Society of China》 2025年第11期3761-3777,共17页
High-density stacking faults(SFs)were introduced into a novel Ni-Co-based superalloy through warm rolling at 300-500°C,and the effects of SFs on its tensile properties at intermediate temperatures(650 and 750... High-density stacking faults(SFs)were introduced into a novel Ni-Co-based superalloy through warm rolling at 300-500°C,and the effects of SFs on its tensile properties at intermediate temperatures(650 and 750°C)were investigated.The results indicated that all warm rolled specimens have high-density SFs and Lomer-Cottrell locks compared with the initial specimens.Meanwhile,the simultaneous improvement of intermediate-temperature strength and ductility of alloys can be achieved by high-density SFs.In particular,the specimen rolled at 300°C exhibited a superior combination of high strength(yield and ultimate tensile strengths of(1311±18)and(1462±25)MPa respectively at 650°C,and(1180±17)and(1293±15)MPa respectively at 750°C)and high fracture elongation((26.7±2.5)%at 650°C and(10.7±1.3)%at 750°C).The high strengths and facture elongations of all warm-rolled specimens were primarily attributed to the interaction of pre-existingγ′phases,high-density SFs and Lomer-Cottrell locks with dislocations,as well as to the formation of high-density deformation nano-twins during tensile loading. 展开更多
关键词 Ni-Co-based superalloy warm rolling stacking fault Lomer-Cottrell lock deformation nano-twins mechanical properties
在线阅读 下载PDF
Needle-like χ phase precipitation induced by stacking fault in novel Co-based superalloys
11
作者 Qiu-zhi GAO Jun-ru WANG +4 位作者 Xu-ming ZHANG Qing-shuang MA Song-lin LI Hui-jun LI Hong-tao ZHU 《Transactions of Nonferrous Metals Society of China》 2025年第10期3402-3413,共12页
To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope... To explain the precipitation mechanism ofχphase in Co-based superalloys,the microstructural evolution of Co−Ti−Mo superalloys subjected to aging was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM)and transmission electron microscope(TEM).The results show that the needle-likeχphase is mainly composed ofD0_(19)-Co_(3)(Ti,Mo),which is transformed from L1_(2-γ′)phase,and a specific orientation relationship exists between them.χphase is nucleated through the shearing ofγ′phase due to the influence of stacking fault.The crystal orientation relationship between L1_(2) andD0_(19)can be confirmed as{111}L1_(2)//{0001}_(D0_(19)),and<112>_(L1_(2))//<1100>_(D0_(19)).The growth ofD0_(19-χ)phase depends on the diffusions of Ti and Mo,and consumes a large number of elements.This progress leads to the appearance ofγ′precipitation depletion zone(PDZ)aroundD0_(19-χ)phase.The addition of Ni improves the stability of L1_(2-γ′)phase and the mechanical properties of Co-based superalloys. 展开更多
关键词 Co-based superalloy χphase precipitation γ′phase stacking fault crystal orientation relationship
在线阅读 下载PDF
Effect of stacking fault energy on mechanical properties of ultrafine-grain Cu and Cu-Al alloy processed by cold-rolling 被引量:6
12
作者 伞星源 梁晓光 +2 位作者 程莲萍 沈黎 朱心昆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期819-824,共6页
Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurem... Cu,Cu-2.2%Al and Cu-4.5%Al with stacking fault energies(SFE) of 78,35 and 7 mJ/m2 respectively were processed by cold-rolling(CR) at liquid nitrogen temperature(77 K) after hot-rolling.X-ray diffraction measurements indicate that a decrease in SFE leads to a decrease in crystallite size but increase in microstrain,dislocation and twin densities of the CR processed samples.Tensile tests at room temperature indicate that as the stacking fault energy decreases,the strength and ductility increase.The results indicate that decreasing stacking fault energy is an optimum method to improve the ductility without loss of strength. 展开更多
关键词 CU Cu alloys COLD-ROLLING tensile tests stacking fault energy
在线阅读 下载PDF
First-principles study of stacking fault energies in Ni_3Al intermetallic alloys 被引量:5
13
作者 温玉锋 孙坚 黄健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期661-664,共4页
The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking f... The first-principles method based on the projector augmented wave method within the generalized gradient approximation was employed to calculate the superlattice intrinsic stacking fault(SISF) and complex stacking fault(CSF) energies of the binary Ni3Al alloys with different Al contents and the ternary Ni3Al intermetallic alloys with addition of alloying elements,such as Pd,Pt,Ti,Mo,Ta,W and Re.The results show that the energies of SISF and CSF increase significantly with increase of Al contents in Ni3Al.Addition of Pd and Pt occupying the Ni sublattices does not change the SISF and CSF energies of Ni3Al markedly in comparison with the Ni-23.75Al alloy.While addition of alloying elements,such as Ti,Mo,Ta,W and Re,occupying the Al sublattices dramatically increases the SISF and CSF energies of Ni3Al.The results suggest that the energies of SISF and CSF are dependent both on the Al contents and on the site occupancy of the ternary alloying element in Ni3Al intermetallic alloys. 展开更多
关键词 NI3AL superlattice intrinsic stacking fault complex stacking fault alloying element FIRST-PRINCIPLES
在线阅读 下载PDF
Corrosion mechanism of Mg alloys involving elongated long-period stacking ordered phase and intragranular lamellar structure 被引量:7
14
作者 Jinshu Xie Jinghuai Zhang +7 位作者 Zhi Zhang Zijian Yu Zhihao Xu Ru Wang Daqing Fang Xiaobo Zhang Xiaoru Zhang Ruizhi Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第20期190-203,共14页
It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subseque... It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subsequent film formation is important for understanding the corrosion mechanism of Mg alloys with multiple strengthening phases/structures.Here,we prepared the high-strength Mg-14.4Er-1.44Zn-0.3Zr(wt.%)alloys containing hybrid structures,i.e.,elongated long-period stacking ordered(LPSO)blocks+intragranular stacking faults(SFs)/LPSO lamellae.The Mg alloy with elongated LPSO blocks and intragranular LPSO lamellae(EZ-500 alloy)obtains good corrosion resistance(2.2 mm y^(–1)),while the Mg alloy containing elongated LPSO blocks and intragranular SFs(EZ-400 alloy)shows a significantly higher corrosion rate(6.9 mm y^(–1)).The results of scanning Kelvin probe force microscopy(SKPFM)show the elongated LPSO blocks act as cathode phase(87 mV in EZ-400 alloy),and the SFs serve as the weak anode(30 mV in EZ-400 alloy),resulting in high potential fluctuation in EZ-400 alloy.On the contrary,both elongated blocks and intragranular lamellae are cathodic LPSO phase(67–69 mV)in EZ-500 alloy,leading to a lower potential fluctuation.Quasi in-situ atomic force microscope(AFM)observation indicates that high potential fluctuation would cause strong micro-galvanic corrosion,and subsequently leads to the failure in rapid formation of corrosion film,finally forming a loose and porous film,while relatively low potential fluctuation could result in more uniform corrosion mode and facilitate the rapid formation of protective film.Therefore,we propose that it is an effective way to develop high-strength corrosionresistant Mg alloys by controlling the potential fluctuation to form a“uniform potential”strengthening microstructure。 展开更多
关键词 Mg alloys stacking faults LPSO phase SKPFM Quasi in-situ AFM Corrosion behavior Potential fluctuation
原文传递
Formation of I1 stacking fault by deformation defect evolution from grain boundaries in Mg
15
作者 Yong-Jie Hu Vaidehi Menon Liang Qi 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2717-2729,共13页
I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)S... I_(1)stacking faults(SFs)in Mg alloys are regarded as the nucleation sites of<c+a>dislocations that are critical for these alloys to achieve high ductility.Previously it was proposed that the formation of I_(1)SFs requires the accumulations of a large number of vacancies,which are difficult to achieve at low temperatures.In this study,molecular dynamics(MD)and molecular statics(MS)simulations based on empirical interatomic potentials were applied to investigate the deformation defect evolutions from the symmetric tilt grain boundaries(GBs)in Mg and Mg-Y alloys under external loading along<c>-axis.The results show the planar faults(PFs)on Pyramidal I planes first appear due to the nucleation and glide of(1/2 c+p)partial dislocations from GBs,where p=1/3(1010).These partial dislocations with pyramidal PFs interact with other defects,including pyramidal PFs themselves,GBs,and ppartial dislocations,generating a large amount of I_(1)SFs.Detailed analyses show the nucleation and growth of I_(1)SFs are achieved by atomic shuffle events and deformation defect reactions without the requirements of vacancy diffusion.Our simulations also suggest the Y clusters at GBs can reduce the critical stress for the formation of pyramidal PFs and I_(1)SFs,which provide a possible reason for the experimental observations that Y promotes the<c+a>dislocation activities. 展开更多
关键词 Magnesium alloys I1 stacking faults dislocations Grain boundaries Defect nucleation and evolution Molecular dynamics simulations
在线阅读 下载PDF
Recent developments on corrosion behaviors of Mg alloys with stacking fault or long period stacking ordered structures 被引量:14
16
作者 Yujin Nie Jianwei Dai +1 位作者 Xuan Li Xiaobo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第4期1124-1148,共25页
Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structu... Corrosion is one of the most drawbacks which restricts the wide applications of Mg alloys.In the last decade,the corrosion behaviors of Mg alloys with stacking fault(SF)and/or long period stacking ordered(LPSO)structures have obtained increasing attention.However,the corrosion mechanism of the SF–or LPSO–containing Mg alloys has not been well illustrated and even reverse results have been reported.In this paper,we have reviewed recent reports on corrosion behaviors of SF–or LPSO–containing Mg alloys to better clarify and understand the significance and mechanism.Moreover,some deficiencies are presented and advises are proposed for the development of corrosion resistant Mg alloys with SF or LPSO structures. 展开更多
关键词 Magnesium alloys Corrosion behavior stacking fault Long period stacking ordered
在线阅读 下载PDF
Predicting the variation of stacking fault energy for binary Cu alloys by first-principles calculations 被引量:7
17
作者 T.Cai K.Q.Li +4 位作者 Z.J.Zhang P.Zhang R.Liu J.B.Yang Z.F.Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第18期61-65,共5页
The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated resul... The variation of stacking fault energy(SFE)in a number of binary Cu alloys is predicted through considering the Suzuki segregation by the full potential linearly augmented plane wave(FPLAPW)method.The calculated results show that some solute atoms(Mg,Al,Si,Zn,Ga,Ge,Cd,Sn,and Pb),which prefer to form the Suzuki segregation,may decrease the value of SFE;while the others(Ti,Mn,Fe,Ni,Zr,Ag,and Au),which do not cause the Suzuki segregation may not decrease the SFE.Furthermore,it is interesting to find that the former alloying elements are located on the right of Cu group while the latter on the left of Cu group in the periodic table of elements.The intrinsic reasons for the new findings can be traced down to the valences electronic structure of solute and Cu atoms,i.e.,the similarity of valence electronic structure between solute and Cu atoms increases the value of SFE,while the difference decreases the value of SFE. 展开更多
关键词 Cu-alloy Deformation behavior First-principles calculation stacking fault energy
原文传递
Stacking fault,dislocation dissociation,and twinning in Pt_(3) Hf compounds:a DFT study 被引量:4
18
作者 Shun-Meng Zhang Kai Xiong +3 位作者 Cheng-Chen Jin Zong-Bo Li Jun-Jie He Yong Mao 《Rare Metals》 SCIE EI CAS CSCD 2021年第4期1020-1030,共11页
The Pt3Hf compound plays a decisive role in strengthening Pt-Hf alloy systems.Evaluating the stacking fault,dislocation dissociation,and twinning mechanisms in Pt3Hf is the first step in understanding its plastic beha... The Pt3Hf compound plays a decisive role in strengthening Pt-Hf alloy systems.Evaluating the stacking fault,dislocation dissociation,and twinning mechanisms in Pt3Hf is the first step in understanding its plastic behavior.In this work,the generalized stacking fault energies(GSFE),including the complex stacking fault(CSF),the superlattice intrinsic stacking fault(SISF),and the antiphase boundary(APB) energies,are calculated using firstprinciples calculations.The dislocation dissociation,deformation twinning,and yield behavior of Pt3Hf are discussed based on GSFE after their incorporation into the Peierls-Nabarro model.We found that the unstable stacking fault energy(γus) of(111)APB is lower than that of SISF and(010) APB,implying that the energy barrier and critical stress required for(111)APB generation are lower than those required for(010)APB formation.This result indicates that the a<110> superdislocation will dissociate into two collinear a/2<110> superpartial dislocations.The a/2<110> dislocation could further dissociate into a a/6<112> Shockley dislocation and a a/3<211> superShockley dislocation connected by a SISF,which results in an APB→SISF transformation.The study also discovered that Pt3 Hf exhibits normal yield behavior,although the cross-slip of a a/2<110> dislocation is not forbidden,and the anomalous yield criterion is satisfied.Moreover,it is observed that the energy barrier and critical stress for APB formation increases with increasing pressure and decreases as the temperature is elevated.When the temperature rises above 1400 K,the a/2<110> dislocation slipping may change from the {111} planes to the {100} planes. 展开更多
关键词 Platinum alloys stacking fault energy Dislocation dissociation TWINNING FIRST-PRINCIPLES
原文传递
Basal stacking fault induced twin boundary gliding,twinning disconnection and twin growth in hcp Ti from the first-principles 被引量:3
19
作者 Qi QIAN Zheng-qing LIU +3 位作者 Yong JIANG Yi-ren WANG Xing-long AN Min SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第2期382-390,共9页
First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mecha... First-principles calculations were performed to investigate the structures and energetics of {101n} coherent twin boundaries(CTBs) and glide twin boundaries(GTBs) in hexagonal close-packed(hcp) Ti. The formation mechanism of GTBs and their correlation with twin growth were fundamentally explored. Results suggested that GTBs can form from the gliding of CTBs, through their interaction with basal stacking fault. The gliding eventually restored the CTB structures by forming a pair of single-layer twinning disconnections. The pile-up of twinning disconnections should be responsible for the wide steps at twin boundaries as observed in high-resolution transmission electron microscopy, which can further promote twin growth. Possible effects of various alloying elements on pinning twin boundaries were also evaluated, to guide the strengthening design of Ti alloys. 展开更多
关键词 twin boundary stacking fault twinning disconnection twin growth first principles
在线阅读 下载PDF
Stacking fault energy and electronic structure of molybdenum under solid solution softening/hardening 被引量:3
20
作者 LIU Pan LIU Liu-cheng GONG Hao-ran 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期39-47,共9页
Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primari... Ab initio calculations are used to understand the fundamental mechanism of the solid solution softening/hardening of the Mo-binary system.The results reveal that the Mo-Ti,Mo-Ta,Mo-Nb,and Mo-W interactions are primarily attractive with negative heats of formation,while the interactions of Mo-Re,and Mo-Zr would be mainly repulsive with positive heats of formation.It is also shown that the addition of Re and Zr would cause the solid solution softening of Mo by the decrease of the unstable stacking fault energy and the increase of ductility.On the contrary,the elements of W,Ta,Ti,and Nb could bring about the solid-solution hardening of Mo through the impediment of the slip of the dislocation and the decrease of ductility.Electronic structures indicate that the weaker/stronger chemical bonding due to the alloying elements should fundamentally induce the solid solution softening/hardening of Mo.The results are discussed and compared with available evidence in literatures,which could deepen the fundamental understanding of the solid solution softening/hardening of the binary metallic system. 展开更多
关键词 stacking fault energy electronic structure MOLYBDENUM solid solution softening/hardening ab initio calculation
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部