For a long time,legal entities have developed and used crime prediction methodologies.The techniques are frequently updated based on crime evaluations and responses from scientific communities.There is a need to devel...For a long time,legal entities have developed and used crime prediction methodologies.The techniques are frequently updated based on crime evaluations and responses from scientific communities.There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level.Child maltreatment is not adequately addressed because children are voiceless.As a result,the possibility of developing a model for predicting child abuse was investigated in this study.Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events.The data set was balanced using the Borderline-SMOTE technique,and then a stacking classifier was employed to ensemble multiple algorithms to predict various types of child abuse.The proposed approach successfully predicted crime types with 93%of accuracy,precision,recall,and F1-Score.The AUC value of the same was 0.989.However,when compared to the Extra Trees model(17.55),which is the second best,the proposed model’s execution time was significantly longer(476.63).We discovered that Machine Learning methods effectively evaluate the demographic and spatial-temporal characteristics of the crimes and predict the occurrences of various subtypes of child abuse.The results indicated that the proposed Borderline-SMOTE enabled Stacking Classifier model(BS-SC Model)would be effective in the real-time child abuse prediction and prevention process.展开更多
The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To ...The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.展开更多
文摘For a long time,legal entities have developed and used crime prediction methodologies.The techniques are frequently updated based on crime evaluations and responses from scientific communities.There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level.Child maltreatment is not adequately addressed because children are voiceless.As a result,the possibility of developing a model for predicting child abuse was investigated in this study.Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events.The data set was balanced using the Borderline-SMOTE technique,and then a stacking classifier was employed to ensemble multiple algorithms to predict various types of child abuse.The proposed approach successfully predicted crime types with 93%of accuracy,precision,recall,and F1-Score.The AUC value of the same was 0.989.However,when compared to the Extra Trees model(17.55),which is the second best,the proposed model’s execution time was significantly longer(476.63).We discovered that Machine Learning methods effectively evaluate the demographic and spatial-temporal characteristics of the crimes and predict the occurrences of various subtypes of child abuse.The results indicated that the proposed Borderline-SMOTE enabled Stacking Classifier model(BS-SC Model)would be effective in the real-time child abuse prediction and prevention process.
文摘The rise of fake news on social media has had a detrimental effect on society. Numerous performance evaluations on classifiers that can detect fake news have previously been undertaken by researchers in this area. To assess their performance, we used 14 different classifiers in this study. Secondly, we looked at how soft voting and hard voting classifiers performed in a mixture of distinct individual classifiers. Finally, heuristics are used to create 9 models of stacking classifiers. The F1 score, prediction, recall, and accuracy have all been used to assess performance. Models 6 and 7 achieved the best accuracy of 96.13 while having a larger computational complexity. For benchmarking purposes, other individual classifiers are also tested.