Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economi...Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economic losses and even endanger national security.It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data.As machine learning technology matures,deep learning is widely used in various industries.Combining deep learning with network security and intrusion detection is the current trend.In this paper,the problem of data classification in intrusion detection system is studied.We propose an intrusion detection model based on stack bidirectional long short-term memory(LSTM),introduce stack bidirectional LSTM into the field of intrusion detection and apply it to the intrusion detection.In order to determine the appropriate parameters and structure of stack bidirectional LSTM network,we have carried out experiments on various network structures and parameters and analyzed the experimental results.The classic KDD Cup’1999 dataset was selected for experiments so that we can obtain convincing and comparable results.Experimental results derived from the KDD Cup’1999 dataset show that the network with three hidden layers containing 80 LSTM cells is superior to other algorithms in computational cost and detection performance due to stack bidirectional LSTM model’s ability to review time and correlate with connected records continuously.The experiment shows the effectiveness of stack bidirectional LSTM network in intrusion detection.展开更多
Supportive learning plays a substantial role in providing a quality edu-cation system.The evaluation of students’performance impacts their deeper insight into the subject knowledge.Specifically,it is essential to mai...Supportive learning plays a substantial role in providing a quality edu-cation system.The evaluation of students’performance impacts their deeper insight into the subject knowledge.Specifically,it is essential to maintain the baseline foundation for building a broader understanding of their careers.This research concentrates on establishing the students’knowledge relationship even in reduced samples.Here,Synthetic Minority Oversampling TEchnique(SMOTE)technique is used for pre-processing the missing value in the provided input dataset to enhance the prediction accuracy.When the initial processing is not done substantially,it leads to misleading prediction accuracy.This research concentrates on modelling an efficient classifier model to predict students’perfor-mance.Generally,the online available student dataset comprises a lesser amount of sample,and k-fold cross-validation is performed to balance the dataset.Then,the relationship among the students’performance(features)is measured using the auto-encoder.The stacked Long Short Term Memory(s-LSTM)is used to learn the previous feedback connection.The stacked model handles the provided data and the data sequence for understanding the long-term dependencies.The simula-tion is done in the MATLAB 2020a environment,and the proposed model shows a better trade-off than the existing approaches.Some evaluation metrics like pre-diction accuracy,sensitivity,specificity,AUROC,F1-score and recall are evalu-ated using the proposed model.The performance of the s?LSTM model is compared with existing approaches.The proposed model gives 89% accuracy,83% precision,86%recall,and 87%F-score.The proposed model outperforms the existing systems in terms of the earlier metrics.展开更多
Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19...Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19 infection worldwide,several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature.To accelerate scientific and public health insights into the spread and impact of COVID-19,Google released the Google COVID-19 search trends symptoms open-access dataset.Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms.Specifically,we propose a stacked long short-term memory(SLSTM)architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset.Considering the SLSTM networks trained using historical data only as the base models,our base models for 7 and 14-day-ahead forecasting of COVID cases had the mean absolute percentage error(MAPE)values of 6.6%and 8.8%,respectively.On the other side,our proposed models had improved MAPE values of 3.2%and 5.6%,respectively.For 7 and 14-day-ahead forecasting of COVID-19 deaths,the MAPE values of the base models were 4.8%and 11.4%,while the improved MAPE values of our proposed models were 4.7%and 7.8%,respectively.We found that the Google search trends for“pneumonia,”“shortness of breath,”and“fever”are the most informative search trends for predicting COVID-19 transmission.We also found that the search trends for“hypoxia”and“fever”were the most informative trends for forecasting COVID-19 mortality.展开更多
基金This work was supported by Scientific Research Starting Project of SWPU[Zheng,D.,No.0202002131604]Major Science and Technology Project of Sichuan Province[Zheng,D.,No.8ZDZX0143]+1 种基金Ministry of Education Collaborative Education Project of China[Zheng,D.,No.952]Fundamental Research Project[Zheng,D.,Nos.549,550].
文摘Nowadays,Internet has become an indispensable part of daily life and is used in many fields.Due to the large amount of Internet traffic,computers are subject to various security threats,which may cause serious economic losses and even endanger national security.It is hoped that an effective security method can systematically classify intrusion data in order to avoid leakage of important data or misuse of data.As machine learning technology matures,deep learning is widely used in various industries.Combining deep learning with network security and intrusion detection is the current trend.In this paper,the problem of data classification in intrusion detection system is studied.We propose an intrusion detection model based on stack bidirectional long short-term memory(LSTM),introduce stack bidirectional LSTM into the field of intrusion detection and apply it to the intrusion detection.In order to determine the appropriate parameters and structure of stack bidirectional LSTM network,we have carried out experiments on various network structures and parameters and analyzed the experimental results.The classic KDD Cup’1999 dataset was selected for experiments so that we can obtain convincing and comparable results.Experimental results derived from the KDD Cup’1999 dataset show that the network with three hidden layers containing 80 LSTM cells is superior to other algorithms in computational cost and detection performance due to stack bidirectional LSTM model’s ability to review time and correlate with connected records continuously.The experiment shows the effectiveness of stack bidirectional LSTM network in intrusion detection.
文摘Supportive learning plays a substantial role in providing a quality edu-cation system.The evaluation of students’performance impacts their deeper insight into the subject knowledge.Specifically,it is essential to maintain the baseline foundation for building a broader understanding of their careers.This research concentrates on establishing the students’knowledge relationship even in reduced samples.Here,Synthetic Minority Oversampling TEchnique(SMOTE)technique is used for pre-processing the missing value in the provided input dataset to enhance the prediction accuracy.When the initial processing is not done substantially,it leads to misleading prediction accuracy.This research concentrates on modelling an efficient classifier model to predict students’perfor-mance.Generally,the online available student dataset comprises a lesser amount of sample,and k-fold cross-validation is performed to balance the dataset.Then,the relationship among the students’performance(features)is measured using the auto-encoder.The stacked Long Short Term Memory(s-LSTM)is used to learn the previous feedback connection.The stacked model handles the provided data and the data sequence for understanding the long-term dependencies.The simula-tion is done in the MATLAB 2020a environment,and the proposed model shows a better trade-off than the existing approaches.Some evaluation metrics like pre-diction accuracy,sensitivity,specificity,AUROC,F1-score and recall are evalu-ated using the proposed model.The performance of the s?LSTM model is compared with existing approaches.The proposed model gives 89% accuracy,83% precision,86%recall,and 87%F-score.The proposed model outperforms the existing systems in terms of the earlier metrics.
基金This work is supported in part by the Deanship of Scientific Research at Jouf University under Grant No.(CV-28–41).
文摘Accurate forecasting of emerging infectious diseases can guide public health officials in making appropriate decisions related to the allocation of public health resources.Due to the exponential spread of the COVID-19 infection worldwide,several computational models for forecasting the transmission and mortality rates of COVID-19 have been proposed in the literature.To accelerate scientific and public health insights into the spread and impact of COVID-19,Google released the Google COVID-19 search trends symptoms open-access dataset.Our objective is to develop 7 and 14-day-ahead forecasting models of COVID-19 transmission and mortality in the US using the Google search trends for COVID-19 related symptoms.Specifically,we propose a stacked long short-term memory(SLSTM)architecture for predicting COVID-19 confirmed and death cases using historical time series data combined with auxiliary time series data from the Google COVID-19 search trends symptoms dataset.Considering the SLSTM networks trained using historical data only as the base models,our base models for 7 and 14-day-ahead forecasting of COVID cases had the mean absolute percentage error(MAPE)values of 6.6%and 8.8%,respectively.On the other side,our proposed models had improved MAPE values of 3.2%and 5.6%,respectively.For 7 and 14-day-ahead forecasting of COVID-19 deaths,the MAPE values of the base models were 4.8%and 11.4%,while the improved MAPE values of our proposed models were 4.7%and 7.8%,respectively.We found that the Google search trends for“pneumonia,”“shortness of breath,”and“fever”are the most informative search trends for predicting COVID-19 transmission.We also found that the search trends for“hypoxia”and“fever”were the most informative trends for forecasting COVID-19 mortality.