期刊文献+
共找到373篇文章
< 1 2 19 >
每页显示 20 50 100
基于SAE-LS-CGAN数据增强的语音情感识别
1
作者 魏佳楠 孙颖 张雪英 《太原理工大学学报》 北大核心 2026年第1期202-211,共10页
【目的】语音情感语料库普遍存在数据稀少的问题,而深度神经网络的训练依赖大规模标注数据以保障模型性能。数据增强是缓解该问题的主流技术手段,但是当前语音情感识别领域对数据增强方法的有效性验证研究尚且不足。【方法】在分析多种... 【目的】语音情感语料库普遍存在数据稀少的问题,而深度神经网络的训练依赖大规模标注数据以保障模型性能。数据增强是缓解该问题的主流技术手段,但是当前语音情感识别领域对数据增强方法的有效性验证研究尚且不足。【方法】在分析多种语音数据增强方法的基础上,提出了一种基于改进条件生成对抗模型(Conditional Generative Adversarial Network,CGAN)的新的数据增强模型SAE-LS-CGAN。该模型将语音特征映射为N个矩阵,鉴别器分别对每个矩阵进行评价,提升鉴别精度。与传统的生成对抗网络(Generative Adversarial Network,GAN)相比,该模型引入栈式自编码器(Stacked AutoEncoder,SAE),并将其输出作为改进CGAN的输入,同时结合类别学习器(Class Learning Block,CLB)优化生成样本的质量;进一步引入最小二乘损失函数(The Least Squares Loss Function,LS)对网络进行对抗性训练,在原始特征空间和潜在空间中生成高质量的特征向量,并将生成数据融入到训练数据中用于分类。【结果】实验结果表明,所提模型在Emo-DB和IEMOCAP数据集上的语音情感识别任务中均取得了较优的性能表现。 展开更多
关键词 语音情感识别 数据增强 栈式自编码器 条件生成对抗网络 最小二乘损失函数
在线阅读 下载PDF
Multi-scale feature fused stacked autoencoder and its application for soft sensor modeling
2
作者 Zhi Li Yuchong Xia +2 位作者 Jian Long Chensheng Liu Longfei Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期241-254,共14页
Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE... Deep Learning has been widely used to model soft sensors in modern industrial processes with nonlinear variables and uncertainty.Due to the outstanding ability for high-level feature extraction,stacked autoencoder(SAE)has been widely used to improve the model accuracy of soft sensors.However,with the increase of network layers,SAE may encounter serious information loss issues,which affect the modeling performance of soft sensors.Besides,there are typically very few labeled samples in the data set,which brings challenges to traditional neural networks to solve.In this paper,a multi-scale feature fused stacked autoencoder(MFF-SAE)is suggested for feature representation related to hierarchical output,where stacked autoencoder,mutual information(MI)and multi-scale feature fusion(MFF)strategies are integrated.Based on correlation analysis between output and input variables,critical hidden variables are extracted from the original variables in each autoencoder's input layer,which are correspondingly given varying weights.Besides,an integration strategy based on multi-scale feature fusion is adopted to mitigate the impact of information loss with the deepening of the network layers.Then,the MFF-SAE method is designed and stacked to form deep networks.Two practical industrial processes are utilized to evaluate the performance of MFF-SAE.Results from simulations indicate that in comparison to other cutting-edge techniques,the proposed method may considerably enhance the accuracy of soft sensor modeling,where the suggested method reduces the root mean square error(RMSE)by 71.8%,17.1%and 64.7%,15.1%,respectively. 展开更多
关键词 Multi-scale feature fusion Soft sensors stacked autoencoders Computational chemistry Chemical processes Parameter estimation
在线阅读 下载PDF
A comprehensive performance evaluation method based on muti-task learning-assisted stacked performance-related autoencoder for hot strip mill process
3
作者 Jian-hong Ma Xin Qin +2 位作者 Kai-xiang Peng Jie Dong Liang Ma 《Journal of Iron and Steel Research International》 2025年第12期4264-4280,共17页
In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These... In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These characteristics pose significant challenges to ensuring process stability and consistency of product performance.Therefore,exploring the potential relationship between product performance and the production process,and developing a comprehensive performance evaluation method adapted to modern HSMP have become an urgent issue.A comprehensive performance evaluation method for HSMP by integrating multi-task learning and stacked performance-related autoencoder is proposed to solve the problems such as incomplete performance indicators(PIs)data,insufficient real-time acquisition requirements,and coupling of multiple PIs.First,according to the existing Chinese standards,a comprehensive performance evaluation grade strategy for strip steel is designed.The random forest model is established to predict and complete the parts of PIs data that could not be obtained in real-time.Second,a stacked performance-related autoencoder(SPAE)model is proposed to extract the deep features closely related to the product performance.Then,considering the correlation between PIs,the multi-task learning framework is introduced to output the subitem ratings and comprehensive product performance rating results of the strip steel online in real-time,where each task represents a subitem of comprehensive performance.Finally,the effectiveness of the method is verified on a real HSMP dataset,and the results show that the accuracy of the proposed method is as high as 94.8%,which is superior to the other comparative methods. 展开更多
关键词 Hot strip mill process Multi-task learning stacked performance-related autoencoder Incomplete data Performance evaluation
原文传递
Rock mass quality classification based on deep learning:A feasibility study for stacked autoencoders 被引量:3
4
作者 Danjie Sheng Jin Yu +3 位作者 Fei Tan Defu Tong Tianjun Yan Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1749-1758,共10页
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep... Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation. 展开更多
关键词 Rock mass quality classification Deep learning stacked autoencoder(sae) Back propagation algorithm
在线阅读 下载PDF
Iterative learning-based many-objective history matching using deep neural network with stacked autoencoder 被引量:2
5
作者 Jaejun Kim Changhyup Park +3 位作者 Seongin Ahn Byeongcheol Kang Hyungsik Jung Ilsik Jang 《Petroleum Science》 SCIE CAS CSCD 2021年第5期1465-1482,共18页
This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matchi... This paper presents an innovative data-integration that uses an iterative-learning method,a deep neural network(DNN)coupled with a stacked autoencoder(SAE)to solve issues encountered with many-objective history matching.The proposed method consists of a DNN-based inverse model with SAE-encoded static data and iterative updates of supervised-learning data are based on distance-based clustering schemes.DNN functions as an inverse model and results in encoded flattened data,while SAE,as a pre-trained neural network,successfully reduces dimensionality and reliably reconstructs geomodels.The iterative-learning method can improve the training data for DNN by showing the error reduction achieved with each iteration step.The proposed workflow shows the small mean absolute percentage error below 4%for all objective functions,while a typical multi-objective evolutionary algorithm fails to significantly reduce the initial population uncertainty.Iterative learning-based manyobjective history matching estimates the trends in water cuts that are not reliably included in dynamicdata matching.This confirms the proposed workflow constructs more plausible geo-models.The workflow would be a reliable alternative to overcome the less-convergent Pareto-based multi-objective evolutionary algorithm in the presence of geological uncertainty and varying objective functions. 展开更多
关键词 Deep neural network stacked autoencoder History matching Iterative learning CLUSTERING Many-objective
原文传递
Optimized Stacked Autoencoder for IoT Enabled Financial Crisis Prediction Model 被引量:2
6
作者 Mesfer Al Duhayyim Hadeel Alsolai +5 位作者 Fahd N.Al-Wesabi Nadhem Nemri Hany Mahgoub Anwer Mustafa Hilal Manar Ahmed Hamza Mohammed Rizwanullah 《Computers, Materials & Continua》 SCIE EI 2022年第4期1079-1094,共16页
Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essen... Recently,Financial Technology(FinTech)has received more attention among financial sectors and researchers to derive effective solutions for any financial institution or firm.Financial crisis prediction(FCP)is an essential topic in business sector that finds it useful to identify the financial condition of a financial institution.At the same time,the development of the internet of things(IoT)has altered the mode of human interaction with the physical world.The IoT can be combined with the FCP model to examine the financial data from the users and perform decision making process.This paper presents a novel multi-objective squirrel search optimization algorithm with stacked autoencoder(MOSSA-SAE)model for FCP in IoT environment.The MOSSA-SAE model encompasses different subprocesses namely preprocessing,class imbalance handling,parameter tuning,and classification.Primarily,the MOSSA-SAE model allows the IoT devices such as smartphones,laptops,etc.,to collect the financial details of the users which are then transmitted to the cloud for further analysis.In addition,SMOTE technique is employed to handle class imbalance problems.The goal of MOSSA in SMOTE is to determine the oversampling rate and area of nearest neighbors of SMOTE.Besides,SAE model is utilized as a classification technique to determine the class label of the financial data.At the same time,the MOSSA is applied to appropriately select the‘weights’and‘bias’values of the SAE.An extensive experimental validation process is performed on the benchmark financial dataset and the results are examined under distinct aspects.The experimental values ensured the superior performance of the MOSSA-SAE model on the applied dataset. 展开更多
关键词 Financial data financial crisis prediction class imbalance problem internet of things stacked autoencoder
在线阅读 下载PDF
Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization 被引量:2
7
作者 Nana Zhang Kun Zhu +1 位作者 Shi Ying Xu Wang 《Computers, Materials & Continua》 SCIE EI 2020年第10期279-308,共30页
Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mos... Software defect prediction plays an important role in software quality assurance.However,the performance of the prediction model is susceptible to the irrelevant and redundant features.In addition,previous studies mostly regard software defect prediction as a single objective optimization problem,and multi-objective software defect prediction has not been thoroughly investigated.For the above two reasons,we propose the following solutions in this paper:(1)we leverage an advanced deep neural network-Stacked Contractive AutoEncoder(SCAE)to extract the robust deep semantic features from the original defect features,which has stronger discrimination capacity for different classes(defective or non-defective).(2)we propose a novel multi-objective defect prediction model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize the advanced neural network-Extreme learning machine(ELM)based on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.We mainly consider two objectives.One objective is to maximize the performance of ELM,which refers to the benefit of the SMONGE model.Another objective is to minimize the output weight norm of ELM,which is related to the cost of the SMONGE model.We compare the SCAE with six state-of-the-art feature extraction methods and compare the SMONGE model with multiple baseline models that contain four classic defect predictors and the MONGE model without SCAE across 20 open source software projects.The experimental results verify that the superiority of SCAE and SMONGE on seven evaluation metrics. 展开更多
关键词 Software defect prediction deep neural network stacked contractive autoencoder multi-objective optimization extreme learning machine
在线阅读 下载PDF
Novel Ensemble Modeling Method for Enhancing Subset Diversity Using Clustering Indicator Vector Based on Stacked Autoencoder 被引量:1
8
作者 Yanzhen Wang Xuefeng Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期123-144,共22页
A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the... A single model cannot satisfy the high-precision prediction requirements given the high nonlinearity between variables.By contrast,ensemble models can effectively solve this problem.Three key factors for improving the accuracy of ensemble models are namely the high accuracy of a submodel,the diversity between subsample sets and the optimal ensemble method.This study presents an improved ensemble modeling method to improve the prediction precision and generalization capability of the model.Our proposed method first uses a bagging algorithm to generate multiple subsample sets.Second,an indicator vector is defined to describe these subsample sets.Third,subsample sets are selected on the basis of the results of agglomerative nesting clustering on indicator vectors to maximize the diversity between subsets.Subsequently,these subsample sets are placed in a stacked autoencoder for training.Finally,XGBoost algorithm,rather than the traditional simple average ensemble method,is imported to ensemble the model during modeling.Three machine learning public datasets and atmospheric column dry point dataset from a practical industrial process show that our proposed method demonstrates high precision and improved prediction ability. 展开更多
关键词 ENSEMBLE model deep learning BAGGING stacked autoencoder XGBoost
在线阅读 下载PDF
Hybrid Image Compression-Encryption Scheme Based on Multilayer Stacked Autoencoder and Logistic Map 被引量:1
9
作者 Neetu Gupta Ritu Vijay 《China Communications》 SCIE CSCD 2022年第1期238-252,共15页
Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is propos... Secure transmission of images over a communication channel, with limited data transfer capacity, possesses compression and encryption schemes. A deep learning based hybrid image compression-encryption scheme is proposed by combining stacked auto-encoder with the logistic map. The proposed structure of stacked autoencoder has seven multiple layers, and back propagation algorithm is intended to extend vector portrayal of information into lower vector space. The randomly generated key is used to set initial conditions and control parameters of logistic map. Subsequently, compressed image is encrypted by substituting and scrambling of pixel sequences using key stream sequences generated from logistic map.The proposed algorithms are experimentally tested over five standard grayscale images. Compression and encryption efficiency of proposed algorithms are evaluated and analyzed based on peak signal to noise ratio(PSNR), mean square error(MSE), structural similarity index metrics(SSIM) and statistical,differential, entropy analysis respectively. Simulation results show that proposed algorithms provide high quality reconstructed images with excellent levels of security during transmission.. 展开更多
关键词 compression-encryption stacked autoencoder chaotic system back propagation algorithm logistic map
在线阅读 下载PDF
Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed 被引量:1
10
作者 Neelam Mughees Mujtaba Hussain Jaffery +2 位作者 Abdullah Mughees Anam Mughees Krzysztof Ejsmont 《Computers, Materials & Continua》 SCIE EI 2023年第6期6375-6393,共19页
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h... Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting. 展开更多
关键词 Deep stacked autoencoder sequence to sequence autoencoder bidirectional long short-term memory network wind speed forecasting solar irradiation forecasting
在线阅读 下载PDF
An attention graph stacked autoencoder for anomaly detection of electro-mechanical actuator using spatio-temporal multivariate signals 被引量:1
11
作者 Jianyu WANG Heng ZHANG Qiang MIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期506-520,共15页
Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoenc... Health monitoring of electro-mechanical actuator(EMA)is critical to ensure the security of airplanes.It is difficult or even impossible to collect enough labeled failure or degradation data from actual EMA.The autoencoder based on reconstruction loss is a popular model that can carry out anomaly detection with only consideration of normal training data,while it fails to capture spatio-temporal information from multivariate time series signals of multiple monitoring sensors.To mine the spatio-temporal information from multivariate time series signals,this paper proposes an attention graph stacked autoencoder for EMA anomaly detection.Firstly,attention graph con-volution is introduced into autoencoder to convolve temporal information from neighbor features to current features based on different weight attentions.Secondly,stacked autoencoder is applied to mine spatial information from those new aggregated temporal features.Finally,based on the bench-mark reconstruction loss of normal training data,different health thresholds calculated by several statistic indicators can carry out anomaly detection for new testing data.In comparison with tra-ditional stacked autoencoder,the proposed model could obtain higher fault detection rate and lower false alarm rate in EMA anomaly detection experiment. 展开更多
关键词 Anomaly detection Spatio-temporal informa-tion Multivariate time series signals Attention graph convolution stacked autoencoder
原文传递
基于SAE和LSTM神经网络的深部未钻地层可钻性预测方法 被引量:2
12
作者 朱亮 李晓明 +1 位作者 纪慧 楼一珊 《西安石油大学学报(自然科学版)》 北大核心 2025年第1期39-46,64,共9页
在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM... 在制定深部地层钻进提速方案时,对地层可钻性进行钻前预测是十分必要的,现有的岩石可钻性预测方法精度低,难以满足钻井设计的要求。为此,提出一种基于SAE和LSTM神经网络相结合的组合模型对深部未钻地层的可钻性进行预测。并将SAE-LSTM组合模型的训练时间和预测结果与BP神经网络、支持向量机、随机森林和单一的LSTM模型进行了对比分析。结果表明:所构建的SAE-LSTM组合模型预测地层可钻性训练用时最短,预测值与实际测量值误差最小,拟合结果的均方根误差RMSE仅为0.081,平均绝对百分比误差MAPE为1.189,决定系数R^(2)为0.966,其RMSE和MAPE最小,R 2最大,较其他模型预测精度更高。该方法为地层参数预测提供了新的途径,能改善以往预测方法在处理复杂地层问题时预测效率低、预测精度不高等问题。 展开更多
关键词 深部地层钻探 岩石可钻性 预测模型 栈式自动编码器 LSTM神经网络 深度学习
在线阅读 下载PDF
Data Cleaning Based on Stacked Denoising Autoencoders and Multi-Sensor Collaborations 被引量:1
13
作者 Xiangmao Chang Yuan Qiu +1 位作者 Shangting Su Deliang Yang 《Computers, Materials & Continua》 SCIE EI 2020年第5期691-703,共13页
Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been prop... Wireless sensor networks are increasingly used in sensitive event monitoring.However,various abnormal data generated by sensors greatly decrease the accuracy of the event detection.Although many methods have been proposed to deal with the abnormal data,they generally detect and/or repair all abnormal data without further differentiate.Actually,besides the abnormal data caused by events,it is well known that sensor nodes prone to generate abnormal data due to factors such as sensor hardware drawbacks and random effects of external sources.Dealing with all abnormal data without differentiate will result in false detection or missed detection of the events.In this paper,we propose a data cleaning approach based on Stacked Denoising Autoencoders(SDAE)and multi-sensor collaborations.We detect all abnormal data by SDAE,then differentiate the abnormal data by multi-sensor collaborations.The abnormal data caused by events are unchanged,while the abnormal data caused by other factors are repaired.Real data based simulations show the efficiency of the proposed approach. 展开更多
关键词 Data cleaning wireless sensor networks stacked denoising autoencoders multi-sensor collaborations
在线阅读 下载PDF
基于SAE和WGAN的入侵检测方法研究 被引量:5
14
作者 刘拥民 许成 +2 位作者 黄浩 张钱垒 赵俊杰 《计算机工程与科学》 北大核心 2025年第2期256-264,共9页
近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常... 近年来,机器学习和深度学习(ML/DL)领域技术飞速发展,将其应用到IDS中的研究也越来越多。但是,目前入侵检测领域的数据集存在特征冗余和攻击分类样本数量不平衡的问题。针对上述问题,提出基于自编码器SAE和生成对抗网络WGAN的网络异常检测方法。首先,针对特征冗余问题,使用堆叠自编码器的编码-隐层-解码思想进行数据降维,细化各类特征,提取更适用于分类的低维度特征。其次,针对样本不平衡(数据量少、种类不多的)问题,将处理过的数据作为生成器的来源输入到WGAN模型中,利用生成对抗网络的生成功能进行样本扩充,弥补分类模型训练过程中某些类型样本数据不足的问题,最终通过RF分类模型进行检测。在数据集NSL-KDD上的实验结果表明,基于本文方法建立的模型SAE-WGAN-RF的F 1-Score为95.58%,Recall为96.54%,Precision为96.03%,相比常见的经典算法的性能有显著提高。 展开更多
关键词 深度学习 生成对抗网络 异常检测 栈式自编码器
在线阅读 下载PDF
Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis 被引量:1
15
作者 Yu-Dong Zhang Muhammad Attique Khan +1 位作者 Ziquan Zhu Shui-Hua Wang 《Computers, Materials & Continua》 SCIE EI 2021年第12期3145-3162,共18页
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s... (Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches. 展开更多
关键词 Pseudo Zernike moment stacked sparse autoencoder deep learning COVID-19 multiple-way data augmentation medical image analysis
在线阅读 下载PDF
Denoising Letter Images from Scanned Invoices Using Stacked Autoencoders 被引量:2
16
作者 Samah Ibrahim Alshathri Desiree Juby Vincent V.S.Hari 《Computers, Materials & Continua》 SCIE EI 2022年第4期1371-1386,共16页
Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In ... Invoice document digitization is crucial for efficient management in industries.The scanned invoice image is often noisy due to various reasons.This affects the OCR(optical character recognition)detection accuracy.In this paper,letter data obtained from images of invoices are denoised using a modified autoencoder based deep learning method.A stacked denoising autoencoder(SDAE)is implemented with two hidden layers each in encoder network and decoder network.In order to capture the most salient features of training samples,a undercomplete autoencoder is designed with non-linear encoder and decoder function.This autoencoder is regularized for denoising application using a combined loss function which considers both mean square error and binary cross entropy.A dataset consisting of 59,119 letter images,which contains both English alphabets(upper and lower case)and numbers(0 to 9)is prepared from many scanned invoices images and windows true type(.ttf)files,are used for training the neural network.Performance is analyzed in terms of Signal to Noise Ratio(SNR),Peak Signal to Noise Ratio(PSNR),Structural Similarity Index(SSIM)and Universal Image Quality Index(UQI)and compared with other filtering techniques like Nonlocal Means filter,Anisotropic diffusion filter,Gaussian filters and Mean filters.Denoising performance of proposed SDAE is compared with existing SDAE with single loss function in terms of SNR and PSNR values.Results show the superior performance of proposed SDAE method. 展开更多
关键词 stacked denoising autoencoder(SDAE) optical character recognition(OCR) signal to noise ratio(SNR) universal image quality index(UQ1)and structural similarity index(SSIM)
在线阅读 下载PDF
Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder
17
作者 Habib Dhahri Besma Rabhi +3 位作者 Slaheddine Chelbi Omar Almutiry Awais Mahmood Adel M.Alimi 《Computers, Materials & Continua》 SCIE EI 2021年第12期3259-3274,共16页
The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic ... The exponential increase in new coronavirus disease 2019(COVID-19)cases and deaths has made COVID-19 the leading cause of death in many countries.Thus,in this study,we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images.A stacked denoising convolutional autoencoder(SDCA)model was proposed to classify X-ray images into three classes:normal,pneumonia,and COVID-19.The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images.The proposed model’s architecture mainly composed of eight autoencoders,which were fed to two dense layers and SoftMax classifiers.The proposed model was evaluated with 6356 images from the datasets from different sources.The experiments and evaluation of the proposed model were applied to an 80/20 training/validation split and for five cross-validation data splitting,respectively.The metrics used for the SDCA model were the classification accuracy,precision,sensitivity,and specificity for both schemes.Our results demonstrated the superiority of the proposed model in classifying X-ray images with high accuracy of 96.8%.Therefore,this model can help physicians accelerate COVID-19 diagnosis. 展开更多
关键词 stacked autoencoder augmentation multiclassification COVID-19 convolutional neural network
在线阅读 下载PDF
Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization
18
作者 Sihua Wang Wenhui Zhang +2 位作者 Gaofei Zheng Xujie Li Yougeng Zhao 《Energy Engineering》 EI 2022年第6期2431-2445,共15页
In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA dat... In order to improve the condition monitoring and fault diagnosis of wind turbines,a stacked noise reduction autoencoding network based on group normalization is proposed in this paper.The network is based on SCADA data of wind turbine operation,firstly,the group normalization(GN)algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed,and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder,which further optimizes the problem that the loss function swings too much during the update process.Finally,in the last layer of the network,the softmax activation function is used to classify the results,and the output of the network is transformed into a probability distribution.The selected wind turbine SCADA data was substituted into the pre-improved and improved stacked denoising autoencoding(SDA)networks for comparative training and verification.The results show that the stacked denoising autoencoding network based on group normalization is more accurate and effective for wind turbine condition monitoring and fault diagnosis,and also provides a reference for wind turbine fault identification. 展开更多
关键词 Wind farm wind turbine group normalization stack noise reduction autoencoding fault diagnosis
在线阅读 下载PDF
融合SAE与Bi-GRU的网络入侵检测方法设计及效率测试
19
作者 陈刚 《长春师范大学学报》 2025年第10期39-45,共7页
为精准、快速地检测网络中的入侵现象,设计了一种融合SAE与Bi-GRU算法的网络入侵检测方法。根据网络入侵原理,设定网络入侵检测标准。采用Libpcap数据包捕获函数,获取网络实时运行数据。通过堆叠自编码器和双向门控循环单元的融合,提取... 为精准、快速地检测网络中的入侵现象,设计了一种融合SAE与Bi-GRU算法的网络入侵检测方法。根据网络入侵原理,设定网络入侵检测标准。采用Libpcap数据包捕获函数,获取网络实时运行数据。通过堆叠自编码器和双向门控循环单元的融合,提取网络的运行数据,通过特征匹配,得出网络入侵类型、状态等参数的检测结果。效率测试实验结果说明,与传统入侵检测方法相比,优化设计方法的误检率和漏检率明显降低,即优化设计方法具有更高的检测效率。 展开更多
关键词 堆叠自动编码器 双向门控循环单元 网络入侵 入侵检测 检测效率
在线阅读 下载PDF
基于RF特征优选和EEMD-SSAE的行星齿轮箱故障诊断
20
作者 刘维团 王友仁 蒋浩宇 《机械制造与自动化》 2025年第3期23-27,共5页
针对在行星齿轮箱故障诊断中由于特征提取不足导致识别率低的问题,研究一种RF特征优选与EEMD-SSAE结合的行星齿轮箱故障诊断方法。采用EEMD对时域信号进行分解;基于Pearson选取相关系数较大的IMF分量,提取时域、频域特征与原始信号特征... 针对在行星齿轮箱故障诊断中由于特征提取不足导致识别率低的问题,研究一种RF特征优选与EEMD-SSAE结合的行星齿轮箱故障诊断方法。采用EEMD对时域信号进行分解;基于Pearson选取相关系数较大的IMF分量,提取时域、频域特征与原始信号特征构建数据集;利用RF剔除冗余特征,构建新数据集作为SSAE网络的输入,并使用softmax分类器实现故障分类。结果表明:在混合工况及噪声干扰下,该方法在准确率、鲁棒性方面优于文中所述的其他模型。 展开更多
关键词 故障诊断 行星齿轮箱 堆栈稀疏自编码器 总体平均经验模态分解 特征优选
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部