Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries....Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.展开更多
After comparing the mechanism of tilted plume under stack effect with that of spill plume,the tilted plume model induced by stack effect in a vertical shaft is developed simply based on the theoretical results and a s...After comparing the mechanism of tilted plume under stack effect with that of spill plume,the tilted plume model induced by stack effect in a vertical shaft is developed simply based on the theoretical results and a series of full-scale tests. It is shown that the two sides of plume are symmetrical and have an accordant regulation that the plume radius has a linear relation to the height z. The profile of fire plume under stack effect is similar to the windblown flame in wind tunnel,and the range of flame deflection angle is about from 50 to 60 degree.展开更多
Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an anal...Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an analysis of the stack effect, analysis methods on the leakage flow through gap of interior door shall be formulated. Until now, studies related to the gap leakage flow in buildings have mainly analyzed flow field and pressure in the buildings one-dimensionally using pressure difference-leakage flowrate relations of Orifice Equation and a network numerical analysis algorithm that as- sumes each compartment in the buildings as a single point. In this study, the Momentum Loss Model which enables pressure drop to be proportional to the flow velocity through the gap of door in computational domain of 3-dimensional numerical analysis was proposed to reflect the gap flow phenomenon effectively in 3-dimensional numerical analysis. Using the proposed model, 3-dimensional numerical analysis of the stack effect on the stairs in buildings was performed, and the effects of separation door and lobby between stair and accommodation on the stack effect were investigated.展开更多
Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (...Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (BTBT) leakages are considered three maindeterminants of total leakage current. Up to now, how to accurately estimate leakage current oflarge-scale circuits within endurable time remains unsolved, even though accurate leakage modelshave been widely discussed. In this paper, the authors first dip into the stack effect of CMOStechnology and propose a new simple gate-level leakage current model. Then, a table-lookup basedtotal leakage current simulator is built up according to the model. To validate the simulator,accurate leakage current is simulated at circuit level using popular simulator HSPICE forcomparison. Some further studies such as maximum leakage current estimation, minimum leakage currentgeneration and a high-level average leakage current macromodel are introduced in detail.Experiments on ISCAS85 and ISCAS89 benchmarks demonstrate that the two proposed leakage currentestimation methods are very accurate and efficient.展开更多
Generalized stacking-fault energies (GSFEs) of basal-plane stacking faults 11 and 12 in Mg alloys have been studied based on first-principles calculations, where 43 alloying elements were considered. It is found tha...Generalized stacking-fault energies (GSFEs) of basal-plane stacking faults 11 and 12 in Mg alloys have been studied based on first-principles calculations, where 43 alloying elements were considered. It is found that the most contributing features of alloying elements to GSFEs are bulk modulus, equilibrium volume, binding energy, atomic radius and ionization energy. Both bulk modulus and ionization energy exhibit positive relationships with GSFEs, and the others show opposite relationships. Multiple regressions have been performed to offer a quantitative prediction for basal-plane GSFEs in Mg-X systems. GSFEs, alloying effects of elements and the prediction model established within this work may provide guidelines for new Mg alloys design with better ductility.展开更多
The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of ...The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of the binary complexes.A stacking interaction between the pyridine ring and the purine ring of ATP is indicated.The general existence of the stacking interaction encourages us to interpret the antitumor mechanism of a new class of antitumor drugs.展开更多
Intrinsic stacking-fault energy is a critical parameter influencing the various mechanical performances of aus- tenitic steels with high Mn concentrations. However, quantitative calculations of the stacking-fault ener...Intrinsic stacking-fault energy is a critical parameter influencing the various mechanical performances of aus- tenitic steels with high Mn concentrations. However, quantitative calculations of the stacking-fault energy (SFE) of the face-centered cubic (fcc) Fe, including the changes in concentrations and geometrical distribution of alloying atoms, cannot be obtained by using previous computation models. On the basis of the interaction energy model, we evaluated the effects of a single alloying atom (i.e., Mn, A1, Si, C and N), as well as its aggregates, including the Mn-X dimer and Mn2-X trimer (X = A1, Si, C and N) on the SFE of the fcc Fe via first-principle calculations. Given low concentrations (〈10 wt%) of alloying atoms, dimers and trimers, theoretical calculations reveal the following: (1) Alloying atom Mn causes a decrease in the SFE, whereas A1, Si, C and N significantly increase the SFE; (2) combination with other alloying atoms to form the Mn-X dimer (X = A1, Si, C and N) exerts an effect on SFE that, to a certain extent, is close to that of the corresponding single X atom; (3) the interaction between Mnz-X and the stacking fault is stronger than that of the corresponding single X atom, inducing a significant increase in the SFE of fcc Fe. The theoretical results we obtained demonstrate that the increase in SFE in high-Mn steel originates from the synergistic effect of Mn and other trace alloy atoms.展开更多
Higher-s dielectric LaLuO3, deposited by molecular beam deposition, with TiN as gate stack is integrated into high-mobility Si/SiGe/SOI quantum-well p-type metal-oxide-semiconduetor field effect transistors. Threshold...Higher-s dielectric LaLuO3, deposited by molecular beam deposition, with TiN as gate stack is integrated into high-mobility Si/SiGe/SOI quantum-well p-type metal-oxide-semiconduetor field effect transistors. Threshold voltage shift and capacitance equivalent thickness shrink are observed, resulting from oxygen scavenging effect in LaLuO3 with ti-rich TiN after high temperature annealing. The mechanism of oxygen scavenging and its potential for resistive memory applications are analyzed and discussed.展开更多
A stacked lateral double-diffused metal–oxide–semiconductor field-effect transistor(LDMOS) with enhanced depletion effect by surface substrate is proposed(ST-LDMOS), which is compatible with the traditional CMOS pro...A stacked lateral double-diffused metal–oxide–semiconductor field-effect transistor(LDMOS) with enhanced depletion effect by surface substrate is proposed(ST-LDMOS), which is compatible with the traditional CMOS processes. The new stacked structure is characterized by double substrates and surface dielectric trenches(SDT). The drift region is separated by the P-buried layer to form two vertically parallel devices. The doping concentration of the drift region is increased benefiting from the enhanced auxiliary depletion effect of the double substrates, leading to a lower specific on-resistance(Ron,sp). Multiple electric field peaks appear at the corners of the SDT, which improves the lateral electric field distribution and the breakdown voltage(BV). Compared to a conventional LDMOS(C-LDMOS), the BV in the ST-LDMOS increases from 259 V to 459 V, an improvement of 77.22%. The Ron,sp decreases from 39.62 m?·cm^2 to 23.24 m?·cm^2 and the Baliga's figure of merit(FOM) of is 9.07 MW/cm^2.展开更多
目的颗粒的堆积高度反映了包装袋的填充密度,堆积高度越大,则填充密度越小;反之,填充密度越大。探究不同振动参数(振动时间、振动频率、振动幅度和振动方向)对颗粒堆积高度的影响规律,以提高包装袋的填充密度。方法基于DEM(Discrete Ele...目的颗粒的堆积高度反映了包装袋的填充密度,堆积高度越大,则填充密度越小;反之,填充密度越大。探究不同振动参数(振动时间、振动频率、振动幅度和振动方向)对颗粒堆积高度的影响规律,以提高包装袋的填充密度。方法基于DEM(Discrete Element Method),利用EDEM数值模拟软件建立PET颗粒堆积模型,并通过Matlab图像处理技术与实验相结合验证模型的准确性;在此模型基础上,仿真模拟颗粒在静止和振动状态下的堆积行为。结论竖直方向的振动更能降低颗粒的堆积高度,增大填充密度;随着振动时间的延长,颗粒的堆积高度逐渐降低,随后趋于平稳,最大可降低约17.70%;随着振动频率的增加,颗粒的堆积高度显著降低,最大可降低约16.67%;随着振动幅度的减小,颗粒的堆积高度逐渐降低,最大可降低约18.59%。结果通过改变振动皮带机的振动参数,可以有效提升包装袋的颗粒填充密度。展开更多
It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting th...It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting the stack performance. A step function is used to describe the effect of the air entrainment caused by the water discharged from branch pipes. An additional source term is introduced to reflect the gas-liquid interphase interaction (GLII) and stack base effect. The drainage stack is divided into upper and base parts. The air pressure in the upper part is predicted by a total variation diminishing (TVD) scheme, while in the base part, it is predicted by a characteristic line method (CLM). The predicted results are compared with the data measured in a real-scale high- rise test building. It is found that the additional source term in the present model is effective. It intensively influences the air pressure distribution in the stack. The air pressure is also sensitive to the velocity-adjusting parameter (VAP), the branch pipe air entrainment, and the conditions on the stack bottom.展开更多
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProject(2010DFA72740-03) supported by the National Key Technology Research and Development Program of China
文摘Stack effect is a dominant driving force for building natural ventilation.Analytical models were developed for the evaluation of stack effect in a shaft,accounting for the heat transfer from shaft interior boundaries.Both the conditions with constant heat flux from boundaries to the airflow and the ones with constant boundary temperature were considered.The prediction capabilities of these analytical models were evaluated by using large eddy simulation(LES) for a hypothetical shaft.The results show that there are fairly good agreements between the predictions of the analytical models and the LES predictions in mass flow rate,vertical temperatures profile and pressure difference as well.Both the results of analytical models and LES show that the neutral plane could locate higher than one half of the shaft height when the upper opening area is identical with the lower opening area.Further,it is also shown that the analytical models perform better than KLOTE's model does in the mass flow rate prediction.
基金supported by the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science &Technology of China ( Grant No: 2006BAJ13B03)the RGCCERG Grant #CityU1253/04E from Hong Kong Re-search Grant Council, HKSAR
文摘After comparing the mechanism of tilted plume under stack effect with that of spill plume,the tilted plume model induced by stack effect in a vertical shaft is developed simply based on the theoretical results and a series of full-scale tests. It is shown that the two sides of plume are symmetrical and have an accordant regulation that the plume radius has a linear relation to the height z. The profile of fire plume under stack effect is similar to the windblown flame in wind tunnel,and the range of flame deflection angle is about from 50 to 60 degree.
文摘Since stack effect that occurs in high-rise buildings has an effect on the indoor environment of the buildings, energy loss and smoke control in case of a fire, there is a need to conduct research on this. For an analysis of the stack effect, analysis methods on the leakage flow through gap of interior door shall be formulated. Until now, studies related to the gap leakage flow in buildings have mainly analyzed flow field and pressure in the buildings one-dimensionally using pressure difference-leakage flowrate relations of Orifice Equation and a network numerical analysis algorithm that as- sumes each compartment in the buildings as a single point. In this study, the Momentum Loss Model which enables pressure drop to be proportional to the flow velocity through the gap of door in computational domain of 3-dimensional numerical analysis was proposed to reflect the gap flow phenomenon effectively in 3-dimensional numerical analysis. Using the proposed model, 3-dimensional numerical analysis of the stack effect on the stairs in buildings was performed, and the effects of separation door and lobby between stair and accommodation on the stack effect were investigated.
文摘Leakage current of CMOS circuit increases dramatically with the technologyscaling down and has become a critical issue of high performance system. Subthreshold, gate andreverse biased junction band-to-band tunneling (BTBT) leakages are considered three maindeterminants of total leakage current. Up to now, how to accurately estimate leakage current oflarge-scale circuits within endurable time remains unsolved, even though accurate leakage modelshave been widely discussed. In this paper, the authors first dip into the stack effect of CMOStechnology and propose a new simple gate-level leakage current model. Then, a table-lookup basedtotal leakage current simulator is built up according to the model. To validate the simulator,accurate leakage current is simulated at circuit level using popular simulator HSPICE forcomparison. Some further studies such as maximum leakage current estimation, minimum leakage currentgeneration and a high-level average leakage current macromodel are introduced in detail.Experiments on ISCAS85 and ISCAS89 benchmarks demonstrate that the two proposed leakage currentestimation methods are very accurate and efficient.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202)the National Natural Science Foundation of China(General Program No.51474149 and Key Program No.51631006)
文摘Generalized stacking-fault energies (GSFEs) of basal-plane stacking faults 11 and 12 in Mg alloys have been studied based on first-principles calculations, where 43 alloying elements were considered. It is found that the most contributing features of alloying elements to GSFEs are bulk modulus, equilibrium volume, binding energy, atomic radius and ionization energy. Both bulk modulus and ionization energy exhibit positive relationships with GSFEs, and the others show opposite relationships. Multiple regressions have been performed to offer a quantitative prediction for basal-plane GSFEs in Mg-X systems. GSFEs, alloying effects of elements and the prediction model established within this work may provide guidelines for new Mg alloys design with better ductility.
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Program Foundation of Institution of High Education the Research Foundation of State Key Laboratory of Coordination Chemistry,Nanjing University.
文摘The stabilities of the complexes of three pyridine-like ligands with M(II)(ATP)^(2-) and M(II)(M=Ni,Co)were studied by spectrophotometry and by comparing the stability constants of the ternary complexes with these of the binary complexes.A stacking interaction between the pyridine ring and the purine ring of ATP is indicated.The general existence of the stacking interaction encourages us to interpret the antitumor mechanism of a new class of antitumor drugs.
基金supported by the National Key Research and Development Program of China(No. 2016YFB0300801)the National Natural Science Foundation of China(Nos.11427806,51471067,51371081,51671082 and 51601060)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20120161110036)the Hunan Provincial Natural Science Foundation of China(No.14JJ4052)
文摘Intrinsic stacking-fault energy is a critical parameter influencing the various mechanical performances of aus- tenitic steels with high Mn concentrations. However, quantitative calculations of the stacking-fault energy (SFE) of the face-centered cubic (fcc) Fe, including the changes in concentrations and geometrical distribution of alloying atoms, cannot be obtained by using previous computation models. On the basis of the interaction energy model, we evaluated the effects of a single alloying atom (i.e., Mn, A1, Si, C and N), as well as its aggregates, including the Mn-X dimer and Mn2-X trimer (X = A1, Si, C and N) on the SFE of the fcc Fe via first-principle calculations. Given low concentrations (〈10 wt%) of alloying atoms, dimers and trimers, theoretical calculations reveal the following: (1) Alloying atom Mn causes a decrease in the SFE, whereas A1, Si, C and N significantly increase the SFE; (2) combination with other alloying atoms to form the Mn-X dimer (X = A1, Si, C and N) exerts an effect on SFE that, to a certain extent, is close to that of the corresponding single X atom; (3) the interaction between Mnz-X and the stacking fault is stronger than that of the corresponding single X atom, inducing a significant increase in the SFE of fcc Fe. The theoretical results we obtained demonstrate that the increase in SFE in high-Mn steel originates from the synergistic effect of Mn and other trace alloy atoms.
基金Supported by the National Natural Science Foundation of China under Grant No 61306126
文摘Higher-s dielectric LaLuO3, deposited by molecular beam deposition, with TiN as gate stack is integrated into high-mobility Si/SiGe/SOI quantum-well p-type metal-oxide-semiconduetor field effect transistors. Threshold voltage shift and capacitance equivalent thickness shrink are observed, resulting from oxygen scavenging effect in LaLuO3 with ti-rich TiN after high temperature annealing. The mechanism of oxygen scavenging and its potential for resistive memory applications are analyzed and discussed.
基金supported by the National Natural Science Foundation of China(Grant No.61464003)the Guangxi Natural Science Foundation,China(Grant Nos.2015GXNSFAA139300 and 2018JJA170010)
文摘A stacked lateral double-diffused metal–oxide–semiconductor field-effect transistor(LDMOS) with enhanced depletion effect by surface substrate is proposed(ST-LDMOS), which is compatible with the traditional CMOS processes. The new stacked structure is characterized by double substrates and surface dielectric trenches(SDT). The drift region is separated by the P-buried layer to form two vertically parallel devices. The doping concentration of the drift region is increased benefiting from the enhanced auxiliary depletion effect of the double substrates, leading to a lower specific on-resistance(Ron,sp). Multiple electric field peaks appear at the corners of the SDT, which improves the lateral electric field distribution and the breakdown voltage(BV). Compared to a conventional LDMOS(C-LDMOS), the BV in the ST-LDMOS increases from 259 V to 459 V, an improvement of 77.22%. The Ron,sp decreases from 39.62 m?·cm^2 to 23.24 m?·cm^2 and the Baliga's figure of merit(FOM) of is 9.07 MW/cm^2.
文摘目的颗粒的堆积高度反映了包装袋的填充密度,堆积高度越大,则填充密度越小;反之,填充密度越大。探究不同振动参数(振动时间、振动频率、振动幅度和振动方向)对颗粒堆积高度的影响规律,以提高包装袋的填充密度。方法基于DEM(Discrete Element Method),利用EDEM数值模拟软件建立PET颗粒堆积模型,并通过Matlab图像处理技术与实验相结合验证模型的准确性;在此模型基础上,仿真模拟颗粒在静止和振动状态下的堆积行为。结论竖直方向的振动更能降低颗粒的堆积高度,增大填充密度;随着振动时间的延长,颗粒的堆积高度逐渐降低,随后趋于平稳,最大可降低约17.70%;随着振动频率的增加,颗粒的堆积高度显著降低,最大可降低约16.67%;随着振动幅度的减小,颗粒的堆积高度逐渐降低,最大可降低约18.59%。结果通过改变振动皮带机的振动参数,可以有效提升包装袋的颗粒填充密度。
基金Project supported by the National Natural Science Foundation of China (No. 10972212)
文摘It is necessary to understand the features of air pressure in a drainage stack of a high-rise building for properly designing and operating a drainage system. This paper presents a mathematical model for predicting the stack performance. A step function is used to describe the effect of the air entrainment caused by the water discharged from branch pipes. An additional source term is introduced to reflect the gas-liquid interphase interaction (GLII) and stack base effect. The drainage stack is divided into upper and base parts. The air pressure in the upper part is predicted by a total variation diminishing (TVD) scheme, while in the base part, it is predicted by a characteristic line method (CLM). The predicted results are compared with the data measured in a real-scale high- rise test building. It is found that the additional source term in the present model is effective. It intensively influences the air pressure distribution in the stack. The air pressure is also sensitive to the velocity-adjusting parameter (VAP), the branch pipe air entrainment, and the conditions on the stack bottom.