Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However...Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.展开更多
This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The ...This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The impact of SDG components on the strength and durability of solidified soil was analysed through a series of tests,including unconfined compressive strength,water stability coefficient,water absorption rate,drying-wetting cycles,and shrinkage tests.Furthermore,microstructure characteristics were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).The study shows that the solidified soil has excellent strength and durability when the SDG stabilizer contains 60% GGBGS,10% DG,and 30% CCS.Additionally,increasing the DG content negatively affects the soil's resistance to water.The SDG stabilizer has potential chemical cementitious characteristics and the calcium carbide slag is rich in calcium ions,which undergo an ion exchange reaction with minerals in the soil.These findings offer new ideas for the development of soil stabilizers.展开更多
Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activi...Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activity and mood associated with backpacks in mountaineering and hiking, research is also needed from a psychological perspective. In this study, the effects of adjusting the backpack shoulder stabilizer were preliminarily tested in terms of subjective fatigue and changes in autonomic nervous activity after hiking. Methods: The experimental 15 healthy participants hiked the mountain under two conditions: 1) without adjusting the stabilizer, a feature of the backpack (NAH condition), and 2) with the stabilizer adjusted (AH condition). First, all participants hiked the mountain in the NAH condition, and after a 30-minute break, they began the hike in the AH condition after confirming that a) their heart rate had recovered and b) they were in good physical condition. Results: HR was significantly lower after each hiking session than during the session. RMSSD was significantly lower pre-AH and post-AH than the NAH condition, but there was no significant difference between the NAH condition and either post-NAH or post-AH. Additionally, RMSSD was significantly lower in the AH condition than pre-AH or post-AH. The shoulders and back were significantly more burdened in the NAH condition than in the AH condition. The pleasure level was significantly higher in the AH condition than in the NAH condition. Conclusion: The results showed that also adjusting the position of the waist belt when adjusting the shoulder stabilizer, which is mainly used for the neck and shoulders, has a significant positive effect on the subjective burden on the upper body and parasympathetic nervous system activity after hiking.展开更多
BACKGROUND Pedicle screw fixation is frequently used to treat unstable thoracolumbar injuries;however,the rate of instrumentation failure remains considerable.The primary contributing factor leading to instrumentation...BACKGROUND Pedicle screw fixation is frequently used to treat unstable thoracolumbar injuries;however,the rate of instrumentation failure remains considerable.The primary contributing factor leading to instrumentation failure is poor bone quality.On the other hand,some evidence suggests that surgical tactics can influence long-term instrumentation stability.AIM To assess factors that influence the stability of spinal instrumentation in patients with thoracolumbar injuries.METHODS This study is a non-randomized single center ambispective evaluation of 204 consecutive patients(117 men;87 women)with unstable thoracolumbar injuries.All patients underwent either stand-alone or combined with anterior column reconstruction instrumentation.In cases with spinal cord and nerve root injuries,either posterior or anterior decompression were performed.Patients with pedicle screw loosening were identified via computed tomography imaging.Out of those,cases with clinically significant instrumentation failure were registered.RESULTS The rate of pedicle screw loosening detected by computed tomography was inversely correlated with bone radiodensity figures and an increased association with the number of instrumented levels,residual kyphotic deformity,laminectomy,and lumbosacral fixation.Intermediate screws and anterior reconstruction were associated with a clinically relevant decreased risk of pedicle screw loosening development.Either complete or partial posterior fusion within instrumented levels was capable of decreasing instrumentation failure risk,while extensive decompression with laminectomy and at least one-level total facetectomy were associated with an increased risk of instrumentation failure.Anterior decompression does not have a negative impact on instrumentation stability.CONCLUSION Intermediate screws,anterior reconstruction and posterior tension band preservation are associated with decreased rates of instrumentation instability development.Posterior fusion is beneficial in terms of instrumentation failure prevention.展开更多
The paper describes the reasons for imminent failure state of high acoustic barriers,consisting due to slipping and falling of the panels out of the inclined part of the barrier.The reason of threat was the lack of th...The paper describes the reasons for imminent failure state of high acoustic barriers,consisting due to slipping and falling of the panels out of the inclined part of the barrier.The reason of threat was the lack of the overall stability of cantilever columns 8,5 m high and global stability of the structure with a total length of 920 m.Structure and its technical condition were described,conclusions of performed analysis were presented and a way to repair was given.展开更多
In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant...In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant, condensation nucleus ma- terial and antifreeze, dispersant, thickener and defoamer were screened and assem- bled to develop a thermal fog sedimentation stabilizer in this study, thereby provid- ing technical support for application and promotion of thermal spraying technology in pest and disease control in crops.展开更多
We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separatio...We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium.展开更多
In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asy...In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.展开更多
To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM ...To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM methods,and a novel hydrothermal process based on the conversion principle was finally proposed.The crystal structure simulation shows that the HA with varied silicon saturation coefficients is more stable than HG,and the HA with a high iron substitution coefficient is more difficult to be converted from HG.The(110)plane of Fe_(2)O_(3) is easier to combine with HG to form HA,and the binding energy is 81.93 kJ/mol.The effects of raw material ratio,solution concentration and hydrothermal parameters on the conversion from HG to HA were revealed,and the optimal conditions for the alumina recovery were obtained.The recovery efficiencies of alumina and Na_(2)O from the RM are 63.06%and 97.34%,respectively,and the Na_(2)O content in the treated RM is only 0.13%.展开更多
Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomed...Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomedical field.However,stability issues may impede the clinical translation of SAzymes.This review provides a comprehensive overview of the applications of SAzymes in various biomedical fields,including disease diagnosis(e.g.,biosensors and diagnostic imaging),antitumor therapy(e.g.,photothermal therapy,photodynamic therapy,sonodynamic therapy,and immunotherapy),antimicrobial therapy,and anti-oxidative stress therapy.More importantly,the existing challenges of SAzymes are discussed,such as metal atom clustering and active site loss,ligand bond breakage at high temperature,insufficient environment tolerance,biosecurity risks,and limited catalytic long-term stability.Finally,several innovative strategies to address these stability concerns are proposed—synthesis process optimization(space-limited strategy,coordination site design,bimetallic synergistic strategy,defect engineering strategy,atom stripping-capture),surface modification,and dynamic responsive design—that collectively pave the way for robust,clinically viable SAzymes.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Alth...Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.展开更多
The Double Take column looks at a single topic from an African and Chinese perspective.This month,we discuss what makes a job meaningful.Look Beyond the Surface.What makes a job meaningful?The answer is far from unive...The Double Take column looks at a single topic from an African and Chinese perspective.This month,we discuss what makes a job meaningful.Look Beyond the Surface.What makes a job meaningful?The answer is far from universal.For some,it’s the stability of a pay cheque and a clear path for career growth.展开更多
Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have g...Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.展开更多
Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a meth...Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a method to construct superior Fe-Beta catalysts based on Al-rich zeolites.This strategy successfully promotes the formation of NH3-SCR-active isolated Fe^(3+)species,thus effectively improving the low-temperature activity of the Fe-Beta catalysts.Thanks to the abundant Brønsted acid sites of the Al-rich zeolite,the Fe_(2)O_(3) particles are redispersed and anchored as isolated Fe^(3+)during hydrothermal aging.This dynamic evolution of Fe species makes up for the adverse effect of dealumination of the Al-rich zeolite framework and achieves high stability for the Al-rich Fe-Beta catalyst.This study may promote the understanding of highly efficient and stable catalyst design using Al-rich zeolites.展开更多
AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was c...AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was conducted on patients with age-related cortical cataracts scheduled for phacoemulsification surgery.Preoperative ultrasound biomicroscopy(UBM)images were collected and analyzed.Initially,patients were stratified into two age groups:<60y and≥60y,with no significant intergroup differences in sex or eye laterality.For further analysis,participants were subdivided into three age strata:<60y,60-75y,and>75y.The ILA was measured in four quadrants(superior,inferior,nasal,and temporal).Intergroup differences in ILA were compared,and correlations between age and ILA parameters were analyzed using statistical methods.RESULTS:The sample data were categorized into three groups according to age,<60y(113 patients;55.8%female),60–75y(245 patients;61.0%female),and>75y(70 patients;50.2%female).The superior quadrant ILA increased progressively with age stratification(P=0.02),and the maximum ILA difference(ΔILA)was significantly higher in patients over 75y(P<0.01).Simple linear regression analysis demonstrated a positive correlation between age and ILA in the superior(Y=7.487+0.096X,R=0.191,P<0.001)and temporal(Y=10.254+0.052X,R=0.104,P=0.032)quadrants.Additionally,the mean ILA across all quadrants(ILAmean)andΔILA were positively correlated with age(ILAmean:Y=9.721+0.055X,R=0.138,P=0.004;ΔILA:Y=3.267+0.044X,R=0.006,P<0.05).CONCLUSION:In patients with age-related cortical cataracts,ILA increases with age,particularly in the superior and temporal quadrants,suggesting that advanced age is associated with greater lens deviation and decreased lens stability.UBM imaging can effectively evaluate the status of the zonule and lens stability,providing crucial evidence for personalized surgical planning based on patients’age.展开更多
Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sust...Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.展开更多
Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.L...Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.展开更多
BACKGROUND Preoperative anxiety is a significant concern for patients,as it affects surgical outcomes,satisfaction,and pain perception.Although both anxiety and pain are common in surgical settings,their relationship ...BACKGROUND Preoperative anxiety is a significant concern for patients,as it affects surgical outcomes,satisfaction,and pain perception.Although both anxiety and pain are common in surgical settings,their relationship with personality traits has not been previously investigated in the Lebanese population.AIM To examine the prevalence of preoperative anxiety,pain perception,and personality traits among Lebanese surgical patients,and to assess the associations between these factors.METHODS A descriptive cross-sectional study was conducted between April 2024 and January 2025 across Lebanese hospitals.A total of 392 adult patients were recruited through convenience sampling.Data were collected using a questionnaire that included sociodemographic,clinical,and surgical variables,the Amsterdam Preoperative Anxiety and Information Scale for anxiety,the Visual Analog Scale and Numerical Pain Rating Scale for preoperative pain,and the Ten-Item Personality Inventory for personality traits.Ethical approval was obtained from the Institutional Review Boards of Makassed General Hospital and Hammoud University Medical Center.RESULTS Overall,25%of participants experienced preoperative anxiety,and 34.5%reported moderate pain.Personality assessment showed that the majority of participants had moderate extraversion(84.1%),moderate emotional stability(65.1%),high conscientiousness(61%),high agreeableness(54.1%),and moderate openness(49.2%).High conscientiousness was significantly associated with higher pain perception(P<0.05),while high emotional stability was associated with lower levels of anxiety(P<0.05).No significant association was found between preoperative anxiety and pain(P>0.05).CONCLUSION This study challenges the assumption that preoperative anxiety and pain are directly correlated and highlights the role of personality traits in shaping patient experience.These findings support the potential value of integrating psychological profiling into preoperative care and lay the groundwork for developing personalized interventions to improve patient-centered surgical outcomes.展开更多
MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO...MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.展开更多
This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductiv...This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.展开更多
基金support from the National Natural:Science Foundation of China(NO.52174014)the National Natural Science Foundation Basic Science Center(NO.52288101).
文摘Oil-based drilling fluids possess excellent properties such as shale inhibition, cuttings suspension, and superior lubrication, making them essential in the development of unconventional oil and gas reservoirs.However, wellbore instability, caused by the invasion of drilling fluids into shale formations, remains a significant challenge for the safe and efficient extraction of shale oil and gas. This work reports the preparation of mesoporous SiO2nanoparticles with low surface energy, utilized as multifunctional agents to enhance the performance of oil-based drilling fluids aimed at improving wellbore stability. The results indicate that the coating prepared from these nanoparticles exhibit excellent hydrophobicity and antifouling properties, increasing the water contact angle from 32°to 146°and oil contact angle from 24°to134.8°. Additionally, these nanoparticles exhibit exceptional chemical stability and thermal resistance.Incorporating these nanoparticles into oil-based drilling fluids reduced the surface energy of the mud cake from 34.99 to 8.17 m J·m-2and increased the roughness of shale from 0.26 to 2.39 μm. These modifications rendered the mud cake and shale surfaces amphiphobic, effectively mitigating capillary infiltration and delaying the long-term strength degradation of shale in oil-based drilling fluids. After 28days of immersion in oil-based drilling fluid, shale cores treated with MF-SiO2exhibited a 30.5% increase in compressive strength compared to untreated cores. Additionally, these nanoparticles demonstrated the ability to penetrate and seal rock pores, reducing the API filtration volume of the drilling fluid from11.2 to 7.6 m L. This study introduces a novel approach to enhance the development of shale gas and oil resources, offering a promising strategy for wellbore stabilization in oil-based drilling fluid systems.
基金Funded by the National Key R&D Program of China (No. 2022YFC3803405)the China State Construction Key Laboratory Project (No. ZJXJ-PT-2022-14)。
文摘This study investigates the use of a low-carbon soil stabilizer called SDG,which is made up of granulated blast furnace slag (GGBFS),desulfurization gypsum (DG),and calcium carbide slag (CCS),to solidify the soil.The impact of SDG components on the strength and durability of solidified soil was analysed through a series of tests,including unconfined compressive strength,water stability coefficient,water absorption rate,drying-wetting cycles,and shrinkage tests.Furthermore,microstructure characteristics were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM).The study shows that the solidified soil has excellent strength and durability when the SDG stabilizer contains 60% GGBGS,10% DG,and 30% CCS.Additionally,increasing the DG content negatively affects the soil's resistance to water.The SDG stabilizer has potential chemical cementitious characteristics and the calcium carbide slag is rich in calcium ions,which undergo an ion exchange reaction with minerals in the soil.These findings offer new ideas for the development of soil stabilizers.
文摘Purpose: There have been many studies on the effects of different types of backpacks on posture from a biomechanical perspective and on the center of gravity. Considering the effects of autonomic nervous system activity and mood associated with backpacks in mountaineering and hiking, research is also needed from a psychological perspective. In this study, the effects of adjusting the backpack shoulder stabilizer were preliminarily tested in terms of subjective fatigue and changes in autonomic nervous activity after hiking. Methods: The experimental 15 healthy participants hiked the mountain under two conditions: 1) without adjusting the stabilizer, a feature of the backpack (NAH condition), and 2) with the stabilizer adjusted (AH condition). First, all participants hiked the mountain in the NAH condition, and after a 30-minute break, they began the hike in the AH condition after confirming that a) their heart rate had recovered and b) they were in good physical condition. Results: HR was significantly lower after each hiking session than during the session. RMSSD was significantly lower pre-AH and post-AH than the NAH condition, but there was no significant difference between the NAH condition and either post-NAH or post-AH. Additionally, RMSSD was significantly lower in the AH condition than pre-AH or post-AH. The shoulders and back were significantly more burdened in the NAH condition than in the AH condition. The pleasure level was significantly higher in the AH condition than in the NAH condition. Conclusion: The results showed that also adjusting the position of the waist belt when adjusting the shoulder stabilizer, which is mainly used for the neck and shoulders, has a significant positive effect on the subjective burden on the upper body and parasympathetic nervous system activity after hiking.
基金Supported by AI For Spinal Surgery Planning and Results Assessment Project under the“Priority 2030”Academic Leadership Initiative,No.6.18-01/240724-15.
文摘BACKGROUND Pedicle screw fixation is frequently used to treat unstable thoracolumbar injuries;however,the rate of instrumentation failure remains considerable.The primary contributing factor leading to instrumentation failure is poor bone quality.On the other hand,some evidence suggests that surgical tactics can influence long-term instrumentation stability.AIM To assess factors that influence the stability of spinal instrumentation in patients with thoracolumbar injuries.METHODS This study is a non-randomized single center ambispective evaluation of 204 consecutive patients(117 men;87 women)with unstable thoracolumbar injuries.All patients underwent either stand-alone or combined with anterior column reconstruction instrumentation.In cases with spinal cord and nerve root injuries,either posterior or anterior decompression were performed.Patients with pedicle screw loosening were identified via computed tomography imaging.Out of those,cases with clinically significant instrumentation failure were registered.RESULTS The rate of pedicle screw loosening detected by computed tomography was inversely correlated with bone radiodensity figures and an increased association with the number of instrumented levels,residual kyphotic deformity,laminectomy,and lumbosacral fixation.Intermediate screws and anterior reconstruction were associated with a clinically relevant decreased risk of pedicle screw loosening development.Either complete or partial posterior fusion within instrumented levels was capable of decreasing instrumentation failure risk,while extensive decompression with laminectomy and at least one-level total facetectomy were associated with an increased risk of instrumentation failure.Anterior decompression does not have a negative impact on instrumentation stability.CONCLUSION Intermediate screws,anterior reconstruction and posterior tension band preservation are associated with decreased rates of instrumentation instability development.Posterior fusion is beneficial in terms of instrumentation failure prevention.
文摘The paper describes the reasons for imminent failure state of high acoustic barriers,consisting due to slipping and falling of the panels out of the inclined part of the barrier.The reason of threat was the lack of the overall stability of cantilever columns 8,5 m high and global stability of the structure with a total length of 920 m.Structure and its technical condition were described,conclusions of performed analysis were presented and a way to repair was given.
基金Supported by Anhui Agricultural Science and Technology Innovation Fund(16A1132)Science and Technology Major Project of Anhui Province(15CZZ03132)Special Fund for Talent Development in Anhui Province(13C1109)~~
文摘In order to solve the drifting away of thermal fog droplets during thermal spraying and the incompatibility between fog droplet carrier and conventional com- mercial agro-chemicals, the fog droplet carrier, surfactant, condensation nucleus ma- terial and antifreeze, dispersant, thickener and defoamer were screened and assem- bled to develop a thermal fog sedimentation stabilizer in this study, thereby provid- ing technical support for application and promotion of thermal spraying technology in pest and disease control in crops.
基金Supported by National Natural Science Foundation of China(12201118)Guangdong Basic and Applied Basic Research Foundation(2023A1515010706)。
文摘We investigate a class of non-integrable two-particle Calogero-Moser systems modulated by a power-law external potential.The local well-posedness of the Cauchy problem is established under the strict initial separation condition for the particles.For suitably prepared initial configurations,local solutions can be extended globally via energy conservation;conversely,negative energy conditions induce(in)finite-time blowup.The linear(in)stability of stationary solutions is analyzed,with their energy serving as a threshold.Numerical investigations employ a fourth-order Runge-Kutta scheme with adaptive step-size control.Simulations demonstrate that the trajectories either converge to steady states or exhibit blowup,depending on the power exponentαand initial conditions.Increasingαaccelerates the convergence rate and dampens oscillatory dynamics,promoting a transition from periodic behavior to static equilibrium.
基金Supported by the National Natural Science Foundation of China(12261018)Universities Key Laboratory of Mathematical Modeling and Data Mining in Guizhou Province(2023013)。
文摘In this paper,we establish and study a single-species logistic model with impulsive age-selective harvesting.First,we prove the ultimate boundedness of the solutions of the system.Then,we obtain conditions for the asymptotic stability of the trivial solution and the positive periodic solution.Finally,numerical simulations are presented to validate our results.Our results show that age-selective harvesting is more conducive to sustainable population survival than non-age-selective harvesting.
基金the financial support from the National Key R&D Program of China(No.2022YFC2904405)the National Natural Science Foundation of China(Nos.22078055,51774079)。
文摘To synergistically recover alumina and alkali from red mud(RM),the structural stability and conversion mechanism of hydroandradite(HA)from hydrogarnet(HG)were investigated via the First-principles,XRF,XRD,PSD and SEM methods,and a novel hydrothermal process based on the conversion principle was finally proposed.The crystal structure simulation shows that the HA with varied silicon saturation coefficients is more stable than HG,and the HA with a high iron substitution coefficient is more difficult to be converted from HG.The(110)plane of Fe_(2)O_(3) is easier to combine with HG to form HA,and the binding energy is 81.93 kJ/mol.The effects of raw material ratio,solution concentration and hydrothermal parameters on the conversion from HG to HA were revealed,and the optimal conditions for the alumina recovery were obtained.The recovery efficiencies of alumina and Na_(2)O from the RM are 63.06%and 97.34%,respectively,and the Na_(2)O content in the treated RM is only 0.13%.
基金supported by the National Natural Science Foundation of China[82003956]the National Key Research and Development Program of China[No.2022YFA1205802]+2 种基金financially supported by Henan Province Health Science and Technology Innovation Youth Talent Project(YQRC2023013 and YQRC2024013)the Key Project of Medical Science and Technology of Henan Province(SBGJ202302072)the Science and Technology Research Project of Henan Province(252102311236).
文摘Single-atom nanozymes(SAzymes)exhibit exceptional catalytic efficiency due to their maximized atom utilization and precisely modulated metalcarrier interactions,which have attracted significant attention in the biomedical field.However,stability issues may impede the clinical translation of SAzymes.This review provides a comprehensive overview of the applications of SAzymes in various biomedical fields,including disease diagnosis(e.g.,biosensors and diagnostic imaging),antitumor therapy(e.g.,photothermal therapy,photodynamic therapy,sonodynamic therapy,and immunotherapy),antimicrobial therapy,and anti-oxidative stress therapy.More importantly,the existing challenges of SAzymes are discussed,such as metal atom clustering and active site loss,ligand bond breakage at high temperature,insufficient environment tolerance,biosecurity risks,and limited catalytic long-term stability.Finally,several innovative strategies to address these stability concerns are proposed—synthesis process optimization(space-limited strategy,coordination site design,bimetallic synergistic strategy,defect engineering strategy,atom stripping-capture),surface modification,and dynamic responsive design—that collectively pave the way for robust,clinically viable SAzymes.
基金financially supported by the National Natural Science Foundation of China(Grant No.52377206,52307237)Natural Science Foundation of Heilongjiang Province of China(YQ2024E046)Postdoctoral Science Foundation of Heilongjiang Province of China(LBH-TZ2413,LBH-Z23198)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for renewable energy storage,yet their practical deployment in subzero environments remains challenging due to electrolyte freezing and dendritic growth.Although organic additives can enhance the antifreeze properties of electrolytes,their weak polarity diminishes ionic conductivity,and their flammability poses safety concerns,undermining the inherent advantages of aqueous systems.Herein,we present a cost-effective and highly stable Na_(2)SO_(4)additive introduced into a Zn(ClO_(4))2-based electrolyte to create an organic-free antifreeze electrolyte.Through Raman spectroscopy,in situ optical microscopy,densityfunctional theory computations,and molecular dynamics simulations,we demonstrate that Na+ions improve low-temperature electrolyte performance and mitigate dendrite formation by regulating uniform Zn^(2+)deposition through preferential adsorption and electrostatic interactions.As a result,the Zn||Zn cells using this electrolyte achieve a remarkable cycling life of 360 h at-40℃ with 61% depth of discharge,and the Zn||PANI cells retained an ultrahigh capacity retention of 91%even after 8000 charge/discharge cycles at-40℃.This work proposes a cost-effective and practical approach for enhancing the long-term operational stability of AZMBs in low-temperature environments.
文摘The Double Take column looks at a single topic from an African and Chinese perspective.This month,we discuss what makes a job meaningful.Look Beyond the Surface.What makes a job meaningful?The answer is far from universal.For some,it’s the stability of a pay cheque and a clear path for career growth.
基金supported by National Natural Science Foundation of China(Grant Nos.52025055,52375576,52350349)Key Research and Development Program of Shaanxi(Program No.2022GXLH-01-12)+2 种基金Joint Fund of Ministry of Education for Equipment Pre-research(No.8091B03012304)Aeronautical Science Foundation of China(No.2022004607001)the Fundamental Research Funds for the Central Universities(No.xtr072024031).
文摘Continuous monitoring of biosignals is essential for advancing early disease detection,personalized treatment,and health management.Flexible electronics,capable of accurately monitoring biosignals in daily life,have garnered considerable attention due to their softness,conformability,and biocompatibility.However,several challenges remain,including imperfect skin-device interfaces,limited breathability,and insufficient mechanoelectrical stability.On-skin epidermal electronics,distinguished by their excellent conformability,breathability,and mechanoelectrical robustness,offer a promising solution for high-fidelity,long-term health monitoring.These devices can seamlessly integrate with the human body,leading to transformative advancements in future personalized healthcare.This review provides a systematic examination of recent advancements in on-skin epidermal electronics,with particular emphasis on critical aspects including material science,structural design,desired properties,and practical applications.We explore various materials,considering their properties and the corresponding structural designs developed to construct high-performance epidermal electronics.We then discuss different approaches for achieving the desired device properties necessary for long-term health monitoring,including adhesiveness,breathability,and mechanoelectrical stability.Additionally,we summarize the diverse applications of these devices in monitoring biophysical and physiological signals.Finally,we address the challenges facing these devices and outline future prospects,offering insights into the ongoing development of on-skin epidermal electronics for long-term health monitoring.
基金supported by the National Key R&D Program of China(No.2023YFC3707200)the National Natural Science Foundation of China(Nos.22306191 and 52270112).
文摘Selective catalytic reduction with NH3(NH3-SCR)is an important means of NO_(x) abatement from stationary and mobile sources,and the key element is efficient and stable NH3-SCR catalysts.In this study,we propose a method to construct superior Fe-Beta catalysts based on Al-rich zeolites.This strategy successfully promotes the formation of NH3-SCR-active isolated Fe^(3+)species,thus effectively improving the low-temperature activity of the Fe-Beta catalysts.Thanks to the abundant Brønsted acid sites of the Al-rich zeolite,the Fe_(2)O_(3) particles are redispersed and anchored as isolated Fe^(3+)during hydrothermal aging.This dynamic evolution of Fe species makes up for the adverse effect of dealumination of the Al-rich zeolite framework and achieves high stability for the Al-rich Fe-Beta catalyst.This study may promote the understanding of highly efficient and stable catalyst design using Al-rich zeolites.
文摘AIM:To investigate age-related differences in the irislens angle(ILA)among patients with age-related cortical cataracts and elucidate the impact of age on lens stability.METHODS:A prospective observational study was conducted on patients with age-related cortical cataracts scheduled for phacoemulsification surgery.Preoperative ultrasound biomicroscopy(UBM)images were collected and analyzed.Initially,patients were stratified into two age groups:<60y and≥60y,with no significant intergroup differences in sex or eye laterality.For further analysis,participants were subdivided into three age strata:<60y,60-75y,and>75y.The ILA was measured in four quadrants(superior,inferior,nasal,and temporal).Intergroup differences in ILA were compared,and correlations between age and ILA parameters were analyzed using statistical methods.RESULTS:The sample data were categorized into three groups according to age,<60y(113 patients;55.8%female),60–75y(245 patients;61.0%female),and>75y(70 patients;50.2%female).The superior quadrant ILA increased progressively with age stratification(P=0.02),and the maximum ILA difference(ΔILA)was significantly higher in patients over 75y(P<0.01).Simple linear regression analysis demonstrated a positive correlation between age and ILA in the superior(Y=7.487+0.096X,R=0.191,P<0.001)and temporal(Y=10.254+0.052X,R=0.104,P=0.032)quadrants.Additionally,the mean ILA across all quadrants(ILAmean)andΔILA were positively correlated with age(ILAmean:Y=9.721+0.055X,R=0.138,P=0.004;ΔILA:Y=3.267+0.044X,R=0.006,P<0.05).CONCLUSION:In patients with age-related cortical cataracts,ILA increases with age,particularly in the superior and temporal quadrants,suggesting that advanced age is associated with greater lens deviation and decreased lens stability.UBM imaging can effectively evaluate the status of the zonule and lens stability,providing crucial evidence for personalized surgical planning based on patients’age.
基金financially supported by the Key Research and Development Program of Heilongjiang Province(No.2024ZXJ03C06)National Natural Science Foundation of China(No.52476192,No.52106237)+1 种基金Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)Technology Project of China Datang Technology Innovation Co.,Ltd(No.DTKC-2024-20610).
文摘Pulsed dynamic electrolysis(PDE),driven by renewable energy,has emerged as an innovative electrocatalytic conversion method,demonstrating significant potential in addressing global energy challenges and promoting sustainable development.Despite significant progress in various electrochemical systems,the regulatory mechanisms of PDE in energy and mass transfer and the lifespan extension of electrolysis systems,particularly in water electrolysis(WE)for hydrogen production,remain insufficiently explored.Therefore,there is an urgent need for a deeper understanding of the unique contributions of PDE in mass transfer enhancement,microenvironment regulation,and hydrogen production optimization,aiming to achieve low-energy consumption,high catalytic activity,and long-term stability in the generation of target products.Here,this review critically examines the microenvironmental effects of PDE on energy and mass transfer,the electrode degradation mechanisms in the lifespan extension of electrolysis systems,and the key factors in enhancing WE for hydrogen production,providing a comprehensive summary of current research progress.The review focuses on the complex regulatory mechanisms of frequency,duty cycle,amplitude,and other factors in hydrogen evolution reaction(HER)performance within PDE strategies,revealing the interrelationships among them.Finally,the potential future directions and challenges for transitioning from laboratory studies to industrial applications are proposed.
基金financially supported by Shenzhen Science and Technology Program(JCYJ20240813142900001)Guangdong Provincial Key Laboratory of New Energy Materials Service Safety。
文摘Chloride-based solid electrolytes are considered promising candidates for next-generation high-energy-density all-solid-state batteries(ASSBs).However,their relatively low oxidative decomposition threshold(~4.2 V vs.Li^(+)/Li)constrains their use in ultrahighvoltage systems(e.g.,4.8 V).In this work,ferroelectric Ba TiO_(3)(BTO)nanoparticles with optimized thickness of~50-100 nm were successfully coated onto Li_(2.5)Y_(0.5)Zr_(0.5)Cl_(6)(LYZC@5BTO)electrolytes using a time-efficient ball-milling process.The nanoparticle-induced interfacial ionic conduction enhancement mechanism contributed to the preservation of LYZC’s high ionic conductivity,which remained at 1.06 m S cm^(-1)for LYZC@5BTO.Furthermore,this surface electric field engineering strategy effectively mitigates the voltage-induced self-decomposition of chloride-based solid electrolytes,suppresses parasitic interfacial reactions with single-crystal NCM811(SCNCM811),and inhibits the irreversible phase transition of SCNCM811.Consequently,the cycling stability of LYZC under high-voltage conditions(4.8 V vs.Li+/Li)is significantly improved.Specifically,ASSB cells employing LYZC@5BTO exhibited a superior discharge capacity of 95.4 m Ah g^(-1)over 200 cycles at 1 C,way outperforming cell using pristine LYZC that only shows a capacity of 55.4 m Ah g^(-1).Furthermore,time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy analysis revealed that Metal-O-Cl by-products from cumulative interfacial side reactions accounted for 6% of the surface species initially,rising to 26% after 200 cycles in pristine LYZC.In contrast,LYZC@5BTO limited this increase to only 14%,confirming the effectiveness of BTO in stabilizing the interfacial chemistry.This electric field modulation strategy offers a promising route toward the commercialization of high-voltage solid-state electrolytes and energy-dense ASSBs.
文摘BACKGROUND Preoperative anxiety is a significant concern for patients,as it affects surgical outcomes,satisfaction,and pain perception.Although both anxiety and pain are common in surgical settings,their relationship with personality traits has not been previously investigated in the Lebanese population.AIM To examine the prevalence of preoperative anxiety,pain perception,and personality traits among Lebanese surgical patients,and to assess the associations between these factors.METHODS A descriptive cross-sectional study was conducted between April 2024 and January 2025 across Lebanese hospitals.A total of 392 adult patients were recruited through convenience sampling.Data were collected using a questionnaire that included sociodemographic,clinical,and surgical variables,the Amsterdam Preoperative Anxiety and Information Scale for anxiety,the Visual Analog Scale and Numerical Pain Rating Scale for preoperative pain,and the Ten-Item Personality Inventory for personality traits.Ethical approval was obtained from the Institutional Review Boards of Makassed General Hospital and Hammoud University Medical Center.RESULTS Overall,25%of participants experienced preoperative anxiety,and 34.5%reported moderate pain.Personality assessment showed that the majority of participants had moderate extraversion(84.1%),moderate emotional stability(65.1%),high conscientiousness(61%),high agreeableness(54.1%),and moderate openness(49.2%).High conscientiousness was significantly associated with higher pain perception(P<0.05),while high emotional stability was associated with lower levels of anxiety(P<0.05).No significant association was found between preoperative anxiety and pain(P>0.05).CONCLUSION This study challenges the assumption that preoperative anxiety and pain are directly correlated and highlights the role of personality traits in shaping patient experience.These findings support the potential value of integrating psychological profiling into preoperative care and lay the groundwork for developing personalized interventions to improve patient-centered surgical outcomes.
基金financially sponsored by the National Natural Science Foundation of China(No.52204414)the National Energy-Saving and Low-Carbon Materials Production and Application Demonstration Platform Program,China(No.TC220H06N)+1 种基金the National Key R&D Program of China(No.2021YFC1910504)the Fundamental Research Funds for the Central Universities,China(No.FRFTP-20-097A1Z)。
文摘MnO_(x)-CeO_(2)catalysts for the low-temperature selective catalytic reduction(SCR)of NO remain vulnerable to water and sulfur poisoning,limting their practical applications.Herein,we report a hydrophobic-modified MnO_(x)-CeO_(2)catalyst that achieves enhanced NO conversion rate and stability under harsh conditions.The catalyst was synthesized by decorating MnOx crystals with amorphous CeO_(2),followed by loading hydrophobic silica on the external surfaces.The hydrophobic silica allowed the adsorption of NH_(3)and NO and diffusion of H,suppressed the adsorption of H_(2)O,and prevented SO_(2)interaction with the Mn active sites,achieving selective molecular discrimination at the catalyst surface.At 120℃,under H_(2)O and SO_(2)exposure,the optimal hydrophobic catalyst maintains 82%NO conversion rate compared with 69%for the unmodified catalyst.The average adsorption energies of NH_(3),H_(2)O,and SO_(2)decreased by 0.05,0.43,and 0.52 eV,respectively.The NO reduction pathway follows the Eley-Rideal mechanism,NH_(3)^(*)+*→NH_(2)^(*)+H^(*)followed by NH_(2)^(*)+NO^(*)→N_(2)^(*)+H_(2)O^(*),with NH_(3)dehydrogenation being the rate determining step.Hydrophobic modification increased the activation energy for H atom transfer,leading to a minor decrease in the NO conversion rate at 120℃.This work demonstrates a viable strategy for developing robust NH_(3)-S CR catalysts capable of efficient operation in water-and sulfur-rich environments.
文摘This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity.Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr-in promoting the formation of coherent nanoscale precipitates such as Al_(3)Zr,Al_(3)Sc,and core-shell Al_(3)(Sc,Zr)with metastable L1_(2)crystal structures.These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries.The review also explores the emerging role of other rare earth elements(REEs),such as erbium(Er),in accelerating precipitation kinetics and improving thermal stability by retarding coarsening.Additionally,recent advancements in thermomechanical processing strategies are examined,with a focus on scalable approaches to optimize the strength-conductivity balance.These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences,particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation.This review offers valuable insights to guide the development of cost-effective,high-strength,heat-resistant aluminum alloys beyond conductor applications,particularly those strengthened through microalloying with Sc and Zr.