Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivativ...Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivatives.Since the introduction of therapeutic insulin in the early 20th century,the conjugation of drug molecules with amino acids and peptides has been pivotal in driving advancements in drug discovery and become an integral part of modern medical practice.Currently,over a hundred peptide-drug conjugates have received global approval and are widely used to treat diseases such as diabetes,cancer,chronic pain,and multiple sclerosis.Key technologies for conjugating peptides with bioactive molecules include antibody-drug conjugates(ADCs),peptide-drug conjugates(PDCs),and proteolysis targeting chimeras(PROTACs).Significant efforts have been dedicated to developing strategies for the modification of amino acids and peptides,with particular focus on site-selective C-H alkylation/arylation reactions.These reactions are crucial for synthesizing bioactive molecules,as they enable the precise introduction of functional groups at specific positions,thereby improving the pharmacological properties of the resulting compounds.展开更多
This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The dat...This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames.展开更多
Interactions between cement clinkers and clay minerals are crucial to the much lower strength of cement-based stabilized clays than concrete or mortar.In this paper,the kaolinite-based and montmorillonite-based clays ...Interactions between cement clinkers and clay minerals are crucial to the much lower strength of cement-based stabilized clays than concrete or mortar.In this paper,the kaolinite-based and montmorillonite-based clays were respectively stabilized by tricalcium silicate(C3S)and tricalcium aluminate(C3A),and measured by the unconfined compressive strength(UCS),29Si/27Al solid state nuclear magnetic resonance(SS-NMR),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscope(TEM)to probe the clinker-clay mineral interaction from macro-mechanical,mineralogical,and microstructural perspectives.The results show that C3A-stabilized samples gain strength rapidly in the first 3 d but are only 20%e60%of the strength of C3S-stabilized ones after 60 d.Microstructures reveal that montmorillonite shows better pozzolanic reactivity due to its superior Sichain and lattice substitution compared to kaolinite.This interaction domains the engineering performance of stabilized clays,benefiting the design of stabilizer referring to as the industrial by-products and clay minerals.展开更多
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli...Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.展开更多
Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool ...Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool to evaluate the Pb-contaminated soils stabilized by electrolytic manganese residue(EMR)-based geopolymer(EG-OPC)from the strength and environmental benefits perspective.First,unconfined compressive strength(UCS)and leaching tests were conducted to study the stabilization effectiveness of EG-OPC.Results indicated that the UCS values of soil(5000 mg/kg of pollutants)stabilized by 20%EG-OPC were 4.87 MPa and 8.13 MPa after 7 d and 60 d of curing,respectively.After 60 d of curing,the Pb concentration in the leachate reached 44 mg/L,far lower than the control group(321 mg/L).Second,soil,pore water,and leachate resistivity(ERS,ERW,and ERL)were measured to establish fitting relationships with strength parameters and pollution risk.The good fitting results(e.g.ERS/ERW versus UCS/secant modulus(E50):correlation coefficient R2 z 0.9,ERS/ERW versus Pb contents:R2 z 0.9,and ERL versus Pb2þconcentration:R2¼0.92)and well used Archie's law(ERS versus ERW:R2>0.9)indicate that the resistivity can be used to evaluate the stabilization effectiveness.Furthermore,the microscopic results revealed two behaviors,demonstrating the reliability of resistivity:(1)with the hydration process,resistivity increases due to a denser structure and lower amounts of free water and Pb ions,and(2)the addition of Pb reduces resistivity due to its inhibition or even destructive effects on cementation and formation of hydration products.展开更多
The traditional cement-based stabilization cannot effectively stabilize the marine soft clay under submerged conditions.In order to solve this problem,the enhancement of cement-stabilized marine soft clay was investig...The traditional cement-based stabilization cannot effectively stabilize the marine soft clay under submerged conditions.In order to solve this problem,the enhancement of cement-stabilized marine soft clay was investigated in this study by adding the ionic soil stabilizer(ISS)and polyacrylamide(PAM).For this purpose,varying contents of ISS and PAM(ISS-P)were added into cement-stabilized marine soft clay and subjected to curing under submerged conditions.Atterberg limits tests,direct shear tests,unconfined compression strength(UCS)tests,water-stability tests,scanning electron microscopy analysis,and X-ray diffraction analysis were carried out.The results show that using 1.8%ISS and 0.9%PAM as the optimal ratio,the cohesion,internal friction angle,UCS,and water-stability of the samples increased by 182.7%,15.4%,176.5%,and 368.5% compared to the cement-stabilized soft clay after 28 d.The increment in soil cohesion with increasing ISS-P content was more apparent than that in the internal friction angle.The combined action of ion exchange attraction and electrostatic adsorption altered the failure characteristics of the samples,resulting in localized micro-cracking and multiple failure paths.Increasing the content of ISS-P strengthened the skeletal structure of soil,reduced inter-particle spacing,and enhanced the water-stability.Additionally,ISS promotes the hydration of cement and compensates for the inhibitory effect of PAM on early cement hydration.ISS-P can effectively enhance the strength and stability of submerged cement-based stabilized marine soft clay.展开更多
The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil im...The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.展开更多
Ni-rich LiNi0.8Mn0.1Co0.1O2(NCM)cathodes in layered oxide cathodes are attractive for high-energy lithium-ion batteries but suffer from rapid capacity fade and thermal instability at high charge voltages.In this study...Ni-rich LiNi0.8Mn0.1Co0.1O2(NCM)cathodes in layered oxide cathodes are attractive for high-energy lithium-ion batteries but suffer from rapid capacity fade and thermal instability at high charge voltages.In this study,we propose an entropy-assisted multi-element doping strategy to mitigate these issues.Specifically,two routes are designed and compared:bulk-like localized high-entropy doping(BHE-NCM)and surface-distributed high-entropy-zone doping(SHE-NCM).The surface entropy-doped NCM cathode delivers enhanced electrochemical performance,including higher capacity retention under 4.5 V cycling and superior rate capability,compared to both bulk-like and pristine counterparts.Comprehensive material characterization reveals that surface-localized doping stabilizes the layered structure with reduced microcrack formation and creates a uniform dopant-rich surface region with improved thermal and electrochemical stability.Overall,entropy-assisted doping at the near surface zone effectively alleviates structural degradation and interface reactions in Ni-rich NCM,enabling improved cycling performance at high voltage.This work highlights the significance of surface entropy engineering as a promising strategy for designing high-voltage cathodes with improved safety and longevity.展开更多
Aqueous zinc-ion batteries(ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectivene...Aqueous zinc-ion batteries(ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectiveness, and eco-friendliness. Currently, the practical application of such batteries is hindered by the poor cycling performance of Zn anodes due to uncontrolled dendrite formation and severe side reactions, although recent reports suggest that these problems can be mitigated through the modification of Zn anodes with metal-based materials.Given that the mechanisms of improving Zn deposition and the structural evolution of metal-based materials have not been systematically reviewed, we herein systematically overview the metal-based materials used to stabilize Zn anodes, starting with a brief summary of the anode working mechanism and the challenges faced by stabilized Zn anodes. Subsequently, the design principles of Zn anodes stabilized by metal-based materials and the related recent progress are reviewed, and the key challenges and perspectives for the future development of such Zn anodes are proposed.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this ...Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this work,a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide.The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide(V‐O)layers,establishing stabilized two‐dimensional channels for fast Zn^(2+) diffusion.The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects(Od),which boosts the Zn^(2+) diffusion kinetics.As a result,as‐prepared Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode shows outstanding Zn‐storage capabilities under room‐and lowtemperature environments(e.g.,440.3 mAh g^(−1) at room temperature and 294.3 mAh g^(−1)at−60°C).Importantly,it shows a long cycling life and high capacity retention of 93.4%over 2500 cycles at 2 A g^(−1) at−60°C.Furthermore,the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations.The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/lowtemperature vanadium‐based cathode materials.展开更多
Despite the fact that mixing uniformity(i.e.the consistency of binder distribution)significantly influence the quality of ground improvement during in situ soil mixing projects,its quantitative evaluation was rarely c...Despite the fact that mixing uniformity(i.e.the consistency of binder distribution)significantly influence the quality of ground improvement during in situ soil mixing projects,its quantitative evaluation was rarely concerned due to the difficulty of measurement from an engineering perspective.A methodology was proposed to quantitatively evaluate the mixing uniformity of stabilized soil using handheld Xfluorescence spectrometry(XRF),which is helpful to elucidate the significance of mixing uniformity on strength.In other words,the calcium content was monitored to ascertain the distribution of cement within the matrix,and a quantitative index was subsequently established.It was observed that an increase in mixing uniformity resulted in a transition in the behavior of the stabilized clay from a plastic to a brittle failure mode,and from a localized failure to a global shear failure under unconfined compression.Subsequent observation of the destruction process revealed that cracks were more readily formed in the low cement zones and then bypass the high cement zones.Furthermore,the effect of mixing uniformity on strength is likely to be amplified with prolonged curing periods.The enhancement of uniformity would increase the volume of the high binder zones,thereby enhancing the overall highstrength performance.The proposed methodology is capable of characterizing the discreteness between the tracked element's measured and theoretical contents,thusing avoiding the uncertainty associated with other indirect indicators.The convenience of the portable handheld XRF apparatus was confirmed,as it can be readily deployed in situ or ex situ to track calcium content within the stabilized mass after borehole sampling.展开更多
The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibri...The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].展开更多
The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures an...The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.展开更多
Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by str...Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes.展开更多
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop...In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.展开更多
Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would indu...Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.展开更多
Passively stabilized double-wing Flapping Micro Air Vehicles(FMAVs)do not require active control and exhibit good electromagnetic interference resistance,with significant research value.In this paper,the dynamic model...Passively stabilized double-wing Flapping Micro Air Vehicles(FMAVs)do not require active control and exhibit good electromagnetic interference resistance,with significant research value.In this paper,the dynamic model of FMAV was established as the foundation for identifying flapping damping coefficients.Through a pendulum experiment,we ascertain the flapping damping of the damper using the energy conservation method.Besides,fitting relationships between the damper area,damper mass,and the moment of inertia are developed.The factors influencing the bottom damper damping are deter-mined using correlation coefficients and hypothesis testing methods.Additionally,stable dampers are installed on both the top and bottom of the FMAV to achieve passive stability in simulations.The minimum damper areas for the FMAV were optimized using genetic algorithms,resulting in a minimum top damper area of 128 cm^(2) and a minimum bottom damper area of 80 cm^(2).A prototype with a mass of 25.5 g and a wingspan of 22 cm has been constructed.Prototype testing demonstrated that FMAV can take off stably with a 3 g payload and a tilt angle of 5°.During testing,the area-to-mass ratio of the FMAV reached 7.29 cm^(2)/g,achieving passive stability with the world's smallest area-to-mass ratio.展开更多
Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the mu...Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.展开更多
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
文摘Amino acids are the building blocks of proteins and play vital roles in both biological systems and drug development.In recent years,increasing attention has been given to the functionalization of amino acid derivatives.Since the introduction of therapeutic insulin in the early 20th century,the conjugation of drug molecules with amino acids and peptides has been pivotal in driving advancements in drug discovery and become an integral part of modern medical practice.Currently,over a hundred peptide-drug conjugates have received global approval and are widely used to treat diseases such as diabetes,cancer,chronic pain,and multiple sclerosis.Key technologies for conjugating peptides with bioactive molecules include antibody-drug conjugates(ADCs),peptide-drug conjugates(PDCs),and proteolysis targeting chimeras(PROTACs).Significant efforts have been dedicated to developing strategies for the modification of amino acids and peptides,with particular focus on site-selective C-H alkylation/arylation reactions.These reactions are crucial for synthesizing bioactive molecules,as they enable the precise introduction of functional groups at specific positions,thereby improving the pharmacological properties of the resulting compounds.
基金the financial support of the National Natural Science Foundation of China(Nos.U2141221 and 52076136)the National Science and Technology Major Project,China(Nos.J2019-Ⅲ-0004-0047 and Y2022-Ⅲ-0001-0010)+1 种基金the Center for Basic Science of Aero Engines and Gas Turbines Project,China(No.P2022-B-Ⅱ019-001)the Natural Science Foundation of Shanghai,China(Nos.22ZR1467900 and 23ZR1481400)。
文摘This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278334,42272322,and 52209136).
文摘Interactions between cement clinkers and clay minerals are crucial to the much lower strength of cement-based stabilized clays than concrete or mortar.In this paper,the kaolinite-based and montmorillonite-based clays were respectively stabilized by tricalcium silicate(C3S)and tricalcium aluminate(C3A),and measured by the unconfined compressive strength(UCS),29Si/27Al solid state nuclear magnetic resonance(SS-NMR),Fourier transform infrared spectroscopy(FTIR),and transmission electron microscope(TEM)to probe the clinker-clay mineral interaction from macro-mechanical,mineralogical,and microstructural perspectives.The results show that C3A-stabilized samples gain strength rapidly in the first 3 d but are only 20%e60%of the strength of C3S-stabilized ones after 60 d.Microstructures reveal that montmorillonite shows better pozzolanic reactivity due to its superior Sichain and lattice substitution compared to kaolinite.This interaction domains the engineering performance of stabilized clays,benefiting the design of stabilizer referring to as the industrial by-products and clay minerals.
基金the W.M.Keck Center for Nano-Scale Imaging in the Department of Chemistry and Biochemistry at the University of Arizona(Grant No.RRID:SCR_022884),with funding from the W.M.Keck Foundation Grant.
文摘Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions.
基金supported by the National Key R&D Program of China(Grant No.2022YFC3901204)the Foundation for Distinguished Young Scholars of Hubei Province,China(Grant No.2021CFA096)the National Natural Science Foundation of China(Grant No.U20A20320).
文摘Evaluating the stabilized lead(Pb)-contaminated soils through sampling and laboratory testing involves costly and time-consuming processes.Therefore,this study employed a low-cost and non-destructive resistivity tool to evaluate the Pb-contaminated soils stabilized by electrolytic manganese residue(EMR)-based geopolymer(EG-OPC)from the strength and environmental benefits perspective.First,unconfined compressive strength(UCS)and leaching tests were conducted to study the stabilization effectiveness of EG-OPC.Results indicated that the UCS values of soil(5000 mg/kg of pollutants)stabilized by 20%EG-OPC were 4.87 MPa and 8.13 MPa after 7 d and 60 d of curing,respectively.After 60 d of curing,the Pb concentration in the leachate reached 44 mg/L,far lower than the control group(321 mg/L).Second,soil,pore water,and leachate resistivity(ERS,ERW,and ERL)were measured to establish fitting relationships with strength parameters and pollution risk.The good fitting results(e.g.ERS/ERW versus UCS/secant modulus(E50):correlation coefficient R2 z 0.9,ERS/ERW versus Pb contents:R2 z 0.9,and ERL versus Pb2þconcentration:R2¼0.92)and well used Archie's law(ERS versus ERW:R2>0.9)indicate that the resistivity can be used to evaluate the stabilization effectiveness.Furthermore,the microscopic results revealed two behaviors,demonstrating the reliability of resistivity:(1)with the hydration process,resistivity increases due to a denser structure and lower amounts of free water and Pb ions,and(2)the addition of Pb reduces resistivity due to its inhibition or even destructive effects on cementation and formation of hydration products.
基金supported by the Fundamental Research Funds for the Central Universities(Nos.202061027,202261063)the National Natural Science Foundation of China(No.41572247)。
文摘The traditional cement-based stabilization cannot effectively stabilize the marine soft clay under submerged conditions.In order to solve this problem,the enhancement of cement-stabilized marine soft clay was investigated in this study by adding the ionic soil stabilizer(ISS)and polyacrylamide(PAM).For this purpose,varying contents of ISS and PAM(ISS-P)were added into cement-stabilized marine soft clay and subjected to curing under submerged conditions.Atterberg limits tests,direct shear tests,unconfined compression strength(UCS)tests,water-stability tests,scanning electron microscopy analysis,and X-ray diffraction analysis were carried out.The results show that using 1.8%ISS and 0.9%PAM as the optimal ratio,the cohesion,internal friction angle,UCS,and water-stability of the samples increased by 182.7%,15.4%,176.5%,and 368.5% compared to the cement-stabilized soft clay after 28 d.The increment in soil cohesion with increasing ISS-P content was more apparent than that in the internal friction angle.The combined action of ion exchange attraction and electrostatic adsorption altered the failure characteristics of the samples,resulting in localized micro-cracking and multiple failure paths.Increasing the content of ISS-P strengthened the skeletal structure of soil,reduced inter-particle spacing,and enhanced the water-stability.Additionally,ISS promotes the hydration of cement and compensates for the inhibitory effect of PAM on early cement hydration.ISS-P can effectively enhance the strength and stability of submerged cement-based stabilized marine soft clay.
基金supported by the Polish National Science Center(Grant No.2022/06/X/ST10/00320)received by Witold Tisler.
文摘The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.
基金supported by the Australian Research Council via Discovery Projects(Nos.DP200103315,DP200103332 and DP230100685)Linkage Projects(No.LP220200920)+1 种基金support from the IONTOF M6 ToF-SIMS(funded by ARC LIEF,LE190100053)the Kratos Axis Ultra XPS(ARC LIEF,LE120100026)。
文摘Ni-rich LiNi0.8Mn0.1Co0.1O2(NCM)cathodes in layered oxide cathodes are attractive for high-energy lithium-ion batteries but suffer from rapid capacity fade and thermal instability at high charge voltages.In this study,we propose an entropy-assisted multi-element doping strategy to mitigate these issues.Specifically,two routes are designed and compared:bulk-like localized high-entropy doping(BHE-NCM)and surface-distributed high-entropy-zone doping(SHE-NCM).The surface entropy-doped NCM cathode delivers enhanced electrochemical performance,including higher capacity retention under 4.5 V cycling and superior rate capability,compared to both bulk-like and pristine counterparts.Comprehensive material characterization reveals that surface-localized doping stabilizes the layered structure with reduced microcrack formation and creates a uniform dopant-rich surface region with improved thermal and electrochemical stability.Overall,entropy-assisted doping at the near surface zone effectively alleviates structural degradation and interface reactions in Ni-rich NCM,enabling improved cycling performance at high voltage.This work highlights the significance of surface entropy engineering as a promising strategy for designing high-voltage cathodes with improved safety and longevity.
基金financially supported by the National Natural Science Foundation of China (No.62101296)the Natural Science Foundation of Shaanxi Province (No.2021JQ-760 and 2021JQ-756)。
文摘Aqueous zinc-ion batteries(ZIBs) combine the benefits of metallic Zn anodes with those of aqueous electrolytes and are well suited for large-scale energy storage because of their inherent high safety, cost-effectiveness, and eco-friendliness. Currently, the practical application of such batteries is hindered by the poor cycling performance of Zn anodes due to uncontrolled dendrite formation and severe side reactions, although recent reports suggest that these problems can be mitigated through the modification of Zn anodes with metal-based materials.Given that the mechanisms of improving Zn deposition and the structural evolution of metal-based materials have not been systematically reviewed, we herein systematically overview the metal-based materials used to stabilize Zn anodes, starting with a brief summary of the anode working mechanism and the challenges faced by stabilized Zn anodes. Subsequently, the design principles of Zn anodes stabilized by metal-based materials and the related recent progress are reviewed, and the key challenges and perspectives for the future development of such Zn anodes are proposed.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金National Natural Science Foundation of China,Grant/Award Numbers:52372188,51902090,51922008,520721142023 Introduction of studying abroad talent program,the China Postdoctoral Science Foundation,Grant/Award Number:2019 M652546+3 种基金Xinxiang Major Science and Technology Projects,Grant/Award Number:21ZD001Henan Province Postdoctoral Start‐Up Foundation,Grant/Award Number:1901017Henan Center for Outstanding Overseas Scientists,Grant/Award Number:GZS2018003Overseas Expertise Introduction Project for Discipline Innovation,Grant/Award Number:D17007。
文摘Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+) storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this work,a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide.The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide(V‐O)layers,establishing stabilized two‐dimensional channels for fast Zn^(2+) diffusion.The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects(Od),which boosts the Zn^(2+) diffusion kinetics.As a result,as‐prepared Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode shows outstanding Zn‐storage capabilities under room‐and lowtemperature environments(e.g.,440.3 mAh g^(−1) at room temperature and 294.3 mAh g^(−1)at−60°C).Importantly,it shows a long cycling life and high capacity retention of 93.4%over 2500 cycles at 2 A g^(−1) at−60°C.Furthermore,the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations.The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/lowtemperature vanadium‐based cathode materials.
基金supported by the National Key R&D Program of China(Grant No.2019YFC1806004)the National Natural Science Foundation of China(Grant Nos.42272322 and 51878159).
文摘Despite the fact that mixing uniformity(i.e.the consistency of binder distribution)significantly influence the quality of ground improvement during in situ soil mixing projects,its quantitative evaluation was rarely concerned due to the difficulty of measurement from an engineering perspective.A methodology was proposed to quantitatively evaluate the mixing uniformity of stabilized soil using handheld Xfluorescence spectrometry(XRF),which is helpful to elucidate the significance of mixing uniformity on strength.In other words,the calcium content was monitored to ascertain the distribution of cement within the matrix,and a quantitative index was subsequently established.It was observed that an increase in mixing uniformity resulted in a transition in the behavior of the stabilized clay from a plastic to a brittle failure mode,and from a localized failure to a global shear failure under unconfined compression.Subsequent observation of the destruction process revealed that cracks were more readily formed in the low cement zones and then bypass the high cement zones.Furthermore,the effect of mixing uniformity on strength is likely to be amplified with prolonged curing periods.The enhancement of uniformity would increase the volume of the high binder zones,thereby enhancing the overall highstrength performance.The proposed methodology is capable of characterizing the discreteness between the tracked element's measured and theoretical contents,thusing avoiding the uncertainty associated with other indirect indicators.The convenience of the portable handheld XRF apparatus was confirmed,as it can be readily deployed in situ or ex situ to track calcium content within the stabilized mass after borehole sampling.
文摘The capture and characterization of oligomers are extremely important in the studies of amyloid aggregation of proteins and peptides.Oligomers are critical intermediates that can impact the structures of amyloid fibrils.Moreover,it is widely accepted that oligomers are the most toxic species along the aggregation pathway[1e4].The studies of oligomers are believed to shed light on the molecular mechanism of amyloid fibrillation and probably the medical clues for related diseases.In vitro investigations of amyloid oligomers are challenging due to their transient and polymorphic nature[5].This is particularly evident in the case of human type-2 diabetes-associated islet amyloid polypeptide(hIAPP),which tends to rapidly form polymorphic fibrils within minutes[6].Notably,hIAPP demonstrates a higher propensity for rapid aggregation compared to other amyloid proteins such as a-synuclein[7].
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘The warm and ice-rich frozen soil is characterized by high unfrozen water content, low shear strength and large compressibility, which is unreliable to meet the stability requirements of engineering infrastructures and foundations in permafrost regions. In this study, a novel approach for stabilizing the warm and ice-rich frozen soil with sulphoaluminate cement was proposed based on chemical stabilization. The mechanical behaviors of the stabilized soil, such as strength and stress-strain relationship, were investigated through a series of triaxial compression tests conducted at -1.0℃, and the mechanism of strength variations of the stabilized soil was also explained based on scanning electron microscope test. The investigations indicated that the strength of stabilized soil to resist failure has been improved, and the linear Mohr-Coulomb criteria can accurately reflect the shear strength of stabilized soil under various applied confining pressure. The increase in both curing age and cement mixing ratio were favorable to the growth of cohesion and internal friction angle. More importantly, the strength improvement mechanism of the stabilized soil is attributed to the formation of structural skeleton and the generation of cementitious hydration products within itself. Therefore, the investigations conducted in this study provide valuable references for chemical stabilization of warm and ice-rich frozen ground, thereby providing a basis for in-situ ground improvement for reinforcing warm and ice-rich permafrost foundations by soil-cement column installation.
基金National Key Research and Development Program of China (2022YFB2502103)National Natural Science Foundation of China (22279107, 22309153)Fundamental Research Funds for the Central Universities (20720230039)。
文摘Single-crystal Nickel-rich layered oxides has been recognized as one of the promising cathodes for nextgeneration lithium batteries on account of their high capacity,while its practical application was hindered by structural instability and slow Li^(+) transfer kinetics.Herein,a surface-to-bulk engineered single-crystal LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(Ni90) cathode,which features W-doped bulk and Li_(2)WO_(4) surface layer,was successfully achieved by a one-step high-valence W^(6+) modification.The as-obtained W-modified Ni90 delivers excellent cycling stability(89.8% capacity retention after 300 cycles at 0.5 C)and rate capability.The enhanced electrochemical performance was ascribed to the doped-W induced stabilized lattice oxygen,reduced Li^(+)/Ni^(2+) mixing and inhibited H2-H3 phase transition in the bulk,and Li_(2)WO_(4) layer generated stabilized cathode/electrolyte interface.In addition,the thinner LiF-rich cathode electrolyte interphase(CEI) on surface and smaller grain size for W-modified Ni90 benefit to its Li^(+) diffusion dynamics.The effect of high-valence W^(6+)on single-crystal Ni-rich cathode was firstly revealed in detail,which deepens the understanding of electrochemical behavior of Ni-rich cathode with high-valence cations modification,and provides clues for design of high-performance layered cathodes.
基金This study was supported by MatSoil Company(Grant No.04G/2022)This research was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie(Grant No.778120).
文摘In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate.
基金funded by the Key R&D Program of Jilin Province(20220201132GX)the Key R&D Program of Hubei Province(2022BAA084)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(RERU2023008)。
文摘Ultra-high nickel cobalt-free lithium layered oxides are promising cathode material for lithium-ion batteries(LIBs)because of their relatively high capacity and low cost.Nevertheless,the high nickel content would induce bulk structure degradation and interfacial environment deterioration,and the absence of Co element reduces the lithium diffusion kinetics,severely limiting the performance liberation of this kind of cathodes.Herein,a multifunctional Ti/Zr dual cation co-doping strategy has been employed to improve the lithium storage performance of LiNi_(0.9)Mn_(0.1)O_(2)(NM91)cathode.On the one hand,the Ti/Zr co-doping weakens the Li^(+)/Ni^(2+)mixing through magnetic interactions due to the inexistence of unpaired electrons for Ti^(4+)and Zr^(4+),increasing the lithium diffusion rate and suppressing the harmful coexistence of H1 and H2 phases.On the other hand,they enhance the lattice oxygen stability because of the strong Ti-O and Zr-O bonds,inhibiting the undesired H3 phase transition and lattice oxygen loss,improving the bulk structure and cathode-electrolyte interface stability.As a result,the Ti/Zr co-doped NM91(NMTZ)exhibits a 91.2%capacity retention rate after 100 cycles,while that of NM91 is only82.9%.Also,the NMTZ displays better rate performance than NM91 with output capacities of 115 and93 mA h g^(-1)at a high current density of 5 C,respectively.Moreover,the designed NMTZ could enable the full battery to deliver an energy density up to 263 W h kg^(-1),making the ultra-high nickel cobaltfree lithium layered oxide cathode closer to practical applications.
基金support by the Natural Science Foundation of China under Grant 61871266the Professional technical service platform of Shanghai under Grant 19DZ2291103.
文摘Passively stabilized double-wing Flapping Micro Air Vehicles(FMAVs)do not require active control and exhibit good electromagnetic interference resistance,with significant research value.In this paper,the dynamic model of FMAV was established as the foundation for identifying flapping damping coefficients.Through a pendulum experiment,we ascertain the flapping damping of the damper using the energy conservation method.Besides,fitting relationships between the damper area,damper mass,and the moment of inertia are developed.The factors influencing the bottom damper damping are deter-mined using correlation coefficients and hypothesis testing methods.Additionally,stable dampers are installed on both the top and bottom of the FMAV to achieve passive stability in simulations.The minimum damper areas for the FMAV were optimized using genetic algorithms,resulting in a minimum top damper area of 128 cm^(2) and a minimum bottom damper area of 80 cm^(2).A prototype with a mass of 25.5 g and a wingspan of 22 cm has been constructed.Prototype testing demonstrated that FMAV can take off stably with a 3 g payload and a tilt angle of 5°.During testing,the area-to-mass ratio of the FMAV reached 7.29 cm^(2)/g,achieving passive stability with the world's smallest area-to-mass ratio.
文摘Aim To study the effect of aerodynamically stabilized seeker dynamics on guided bomb system analysis. Methods A thorough analysis of aerodynamically stabilized seeker dynamics was made to show that because of the much smaller time constant, its dynamic model can be greatly simplified. Results and Conclusion In guided bomb guidance/control digital simulation, with the use of the simplified seeker model, simulation time can be reduced without the loss of simulation accuracy.