The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growt...The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growth remains unclear.In this study,we obtained potato dro2 mutant lines by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9(CRISPR/Cas9)-mediated genome editing system.The mutant lines were generated from a splicing defect of the StDRO2 intron 1,which causes a nonsense mutation in StDRO2.Furthermore,the secondary structure of StDRO2 mRNA analyzed with RNAfold Web Server was altered in the dro2 mutant.Mutation of StDRO2 conveys potato adaptation through changing the RSA via alteration of auxin transport under drought stress.The potato dro2 lines showed higher plant height,longer root length,smaller root growth angle and increased tuber weight than the wild-type.The alteration of RSA was associated with a disturbance of IAA distribution in the dro2 mutant,and the levels of StPIN7 and StPIN10 detected by using real-time PCR were up-regulated in the roots of potato dro2 lines grown under drought stress.Moreover,the microRNAs(miRNAs)PmiREN024536 and PmiREN024486 targeted the StDRO2 gene,and auxin positively and negatively regulated the expression of StDRO2 and the miRNAs PmiREN024536 and PmiREN024486,respectively,in the potato roots.Our data shows that a regulatory network involving auxin,StDRO2,PmiREN024536 and PmiREN024486 can control RSA to convey potato fitness under drought stress.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.32260085,31860064,31660501,31970609,32260718 and 31901870)the Key Projects of the Applied Basic Research Plan of Yunnan Province(Grant No.202301AS070082)+3 种基金the Start-up fund from Xishuangbanna Tropical Botanical Garden,the‘Top Talents Program in Science and Technology’from Yunnan Province,the Major Science and Technology Project in Yunnan Province(Grant Nos.202102AE090042 and 202202AE090036)the Young and Middle-Aged Academic and Technical Leaders Reserve Talent Program in Yunnan Province(Grant No.202205AC160076)China Postdoctoral Science Foundation(Grant No.2019M653849XB)the High-level Talents Introduction Plan of Yunnan Province-Young Talents Special Project。
文摘The formation of root system architecture(RSA)plays a crucial role in plant growth.OsDRO1 is known to have a function in controlling RSA in rice,however,the role of potato StDRO2,a homolog of rice OsDRO1,in root growth remains unclear.In this study,we obtained potato dro2 mutant lines by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated 9(CRISPR/Cas9)-mediated genome editing system.The mutant lines were generated from a splicing defect of the StDRO2 intron 1,which causes a nonsense mutation in StDRO2.Furthermore,the secondary structure of StDRO2 mRNA analyzed with RNAfold Web Server was altered in the dro2 mutant.Mutation of StDRO2 conveys potato adaptation through changing the RSA via alteration of auxin transport under drought stress.The potato dro2 lines showed higher plant height,longer root length,smaller root growth angle and increased tuber weight than the wild-type.The alteration of RSA was associated with a disturbance of IAA distribution in the dro2 mutant,and the levels of StPIN7 and StPIN10 detected by using real-time PCR were up-regulated in the roots of potato dro2 lines grown under drought stress.Moreover,the microRNAs(miRNAs)PmiREN024536 and PmiREN024486 targeted the StDRO2 gene,and auxin positively and negatively regulated the expression of StDRO2 and the miRNAs PmiREN024536 and PmiREN024486,respectively,in the potato roots.Our data shows that a regulatory network involving auxin,StDRO2,PmiREN024536 and PmiREN024486 can control RSA to convey potato fitness under drought stress.