期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed
1
作者 Liang Zeng Ziyang Ding +1 位作者 Junyang Shi Shanshan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1757-1787,共31页
In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper st... In the manufacturing industry,reasonable scheduling can greatly improve production efficiency,while excessive resource consumption highlights the growing significance of energy conservation in production.This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed(DHPFSP-VPS),considering both the minimum makespan and total energy consumption(TEC)as objectives.A discrete multi-objective squirrel search algorithm(DMSSA)is proposed to solve the DHPFSPVPS.DMSSA makes four improvements based on the squirrel search algorithm.Firstly,in terms of the population initialization strategy,four hybrid initialization methods targeting different objectives are proposed to enhance the quality of initial solutions.Secondly,enhancements are made to the population hierarchy system and position updating methods of the squirrel search algorithm,making it more suitable for discrete scheduling problems.Additionally,regarding the search strategy,six local searches are designed based on problem characteristics to enhance search capability.Moreover,a dynamic predator strategy based on Q-learning is devised to effectively balance DMSSA’s capability for global exploration and local exploitation.Finally,two speed control energy-efficient strategies are designed to reduce TEC.Extensive comparative experiments are conducted in this paper to validate the effectiveness of the proposed strategies.The results of comparing DMSSA with other algorithms demonstrate its superior performance and its potential for efficient solving of the DHPFSP-VPS problem. 展开更多
关键词 Distributed heterogeneous permutation flowshop problem squirrel search algorithm muli-objective optimization ENERGY-EFFICIENT variable processing speed
在线阅读 下载PDF
A Robust Video Watermarking Scheme with Squirrel Search Algorithm
2
作者 Aman Bhaskar Chirag Sharma +3 位作者 Khalid Mohiuddin Aman Singh Osman A.Nasr Mamdooh Alwetaishi 《Computers, Materials & Continua》 SCIE EI 2022年第5期3069-3089,共21页
Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired disto... Advancement in multimedia technology has resulted in protection against distortion,modification,and piracy.For implementing such protection,we have an existing technique called watermarking but obtaining desired distortion level with sufficient robustness is a challenging task for watermarking in multimedia applications.In the paper,we proposed a smart technique for video watermarking associating meta-heuristic algorithms along with an embedding method to gain an optimized efficiency.The main aim of the optimization algorithm is to obtain solutions with maximum robustness,and which should not exceed the set threshold of quality.To represent the accuracy of the proposed scheme,we employ a popular video watermarking technique(DCT domain)having frame selection and embedding method for watermarking.A squirrel search algorithm is chosen as a meta-heuristic algorithm that utilizes the stated fitness function.The results indicate that quality constraint is fulfilled,and the proposed technique gives improved robustness against different attacks with several quality thresholds.The proposed technique could be practically implemented in several multimedia applications such as the films industry,medical imagery,OOT platforms,etc. 展开更多
关键词 Meta-heuristic algorithm constrain optimization problem fitness fiction frame selection squirrel search algorithm
在线阅读 下载PDF
Compressive strength prediction and optimization design of sustainable concrete based on squirrel search algorithm-extreme gradient boosting technique 被引量:3
3
作者 Enming LI Ning ZHANG +2 位作者 Bin XI Jian ZHOU Xiaofeng GAO 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第9期1310-1325,共16页
Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is nece... Concrete is the most commonly used construction material.However,its production leads to high carbon dioxide(CO_(2))emissions and energy consumption.Therefore,developing waste-substitutable concrete components is necessary.Improving the sustainability and greenness of concrete is the focus of this research.In this regard,899 data points were collected from existing studies where cement,slag,fly ash,superplasticizer,coarse aggregate,and fine aggregate were considered potential influential factors.The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult.Instead of the traditional compressive strength test,this study combines five novel metaheuristic algorithms with extreme gradient boosting(XGB)to predict the compressive strength of green concrete based on fly ash and blast furnace slag.The intelligent prediction models were assessed using the root mean square error(RMSE),coefficient of determination(R^(2)),mean absolute error(MAE),and variance accounted for(VAF).The results indicated that the squirrel search algorithm-extreme gradient boosting(SSA-XGB)yielded the best overall prediction performance with R^(2) values of 0.9930 and 0.9576,VAF values of 99.30 and 95.79,MAE values of 0.52 and 2.50,RMSE of 1.34 and 3.31 for the training and testing sets,respectively.The remaining five prediction methods yield promising results.Therefore,the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete.Finally,the developed SSA-XGB considered the effects of all the input factors on the compressive strength.The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy. 展开更多
关键词 sustainable concrete fly ash slay extreme gradient boosting technique squirrel search algorithm parametric analysis
原文传递
Single and multi-area multi-fuel economic dispatch using a fuzzified squirrel search algorithm 被引量:3
4
作者 V.Ponnuvel Sakthivel P.Duraisamy Sathya 《Protection and Control of Modern Power Systems》 2021年第1期147-159,共13页
Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and to offer the best power transfers between different areas by minimizing the objective functions among the... Multi-Area Multi-Fuel Economic Dispatch (MAMFED) aims to allocate the best generation schedule in each area and to offer the best power transfers between different areas by minimizing the objective functions among the available fuel alternatives for each unit while satisfying various constraints in power systems. In this paper, a Fuzzified Squirrel Search Algorithm (FSSA) algorithm is proposed to solve the single-area multi-fuel economic dispatch (SAMFED) and MAMFED problems. Squirrel Search Algorithm (SSA) mimics the foraging behavior of squirrels based on the dynamic jumping and gliding strategies. In the SSA approach, predator presence behavior and a seasonal monitoring condition are employed to increase the search ability of the algorithm, and to balance the exploitation and exploration. The suggested approach considers the line losses, valve point loading impacts, multi-fuel alternatives, and tie-line limits of the power system. Because of the contradicting nature of fuel cost and pollutant emission objectives, weighted sum approach and price penalty factor are used to transfer the bi-objective function into a single objective function. Furthermore, a fuzzy decision strategy is introduced to find one of the Pareto optimal fronts as the best compromised solution. The feasibility of the FSSA is tested on a three-area test system for both the SAMFED and MAMFED problems. The results of FSSA approach are compared with other heuristic approaches in the literature. Multi-objective performance indicators such as generational distance, spacing metric and ratio of non-dominated individuals are evaluated to validate the effectiveness of FSSA. The results divulge that the FSSA is a promising approach to solve the SAMFED and MAMFED problems while providing a better compromise solution in comparison with other heuristic approaches. 展开更多
关键词 Fuzzy set theory Heuristic optimization Multi-area economic dispatch Pareto-optimal front squirrel search algorithm Tie-line constraint
在线阅读 下载PDF
Squirrel Search Optimization with Deep Convolutional Neural Network for Human Pose Estimation 被引量:3
5
作者 K.Ishwarya A.Alice Nithya 《Computers, Materials & Continua》 SCIE EI 2023年第3期6081-6099,共19页
Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namel... Human pose estimation(HPE)is a procedure for determining the structure of the body pose and it is considered a challenging issue in the computer vision(CV)communities.HPE finds its applications in several fields namely activity recognition and human-computer interface.Despite the benefits of HPE,it is still a challenging process due to the variations in visual appearances,lighting,occlusions,dimensionality,etc.To resolve these issues,this paper presents a squirrel search optimization with a deep convolutional neural network for HPE(SSDCNN-HPE)technique.The major intention of the SSDCNN-HPE technique is to identify the human pose accurately and efficiently.Primarily,the video frame conversion process is performed and pre-processing takes place via bilateral filtering-based noise removal process.Then,the EfficientNet model is applied to identify the body points of a person with no problem constraints.Besides,the hyperparameter tuning of the EfficientNet model takes place by the use of the squirrel search algorithm(SSA).In the final stage,the multiclass support vector machine(M-SVM)technique was utilized for the identification and classification of human poses.The design of bilateral filtering followed by SSA based EfficientNetmodel for HPE depicts the novelty of the work.To demonstrate the enhanced outcomes of the SSDCNN-HPE approach,a series of simulations are executed.The experimental results reported the betterment of the SSDCNN-HPE system over the recent existing techniques in terms of different measures. 展开更多
关键词 Parameter tuning human pose estimation deep learning squirrel search algorithm activity recognition
在线阅读 下载PDF
基于松鼠搜索算法的三相感应电机参数估计 被引量:1
6
作者 苏文胜 周超 +2 位作者 窦建平 王平远 姜志康 《微电机》 2025年第6期43-49,共7页
准确的三相感应电机(TIM)模型参数估计是实现高效矢量控制和节能控制的关键,也是电机数字孪生和故障诊断的基础。本文采用一种新近提出的松鼠搜索算法(SSA)来估计三相感应电机的定转子电阻、自感和互感参数。采用两相静止坐标系进行电... 准确的三相感应电机(TIM)模型参数估计是实现高效矢量控制和节能控制的关键,也是电机数字孪生和故障诊断的基础。本文采用一种新近提出的松鼠搜索算法(SSA)来估计三相感应电机的定转子电阻、自感和互感参数。采用两相静止坐标系进行电机建模。在SSA中,根据TIM电流实测值与电流估计值之间的差值来对待估计参数进行不断地调整,经过多次迭代运算后估计出参数值。计算结果表明,基于SSA估计参数计算出的电流与实测值高度一致。最后,将SSA与鲸鱼优化算法和粒子群优化算法进行了比较,对比结果表明了SSA估计出的参数误差较小,在估计精度和收敛速度方面有优势。 展开更多
关键词 三相感应电机 参数估计 松鼠搜索 估计精度 收敛速度
在线阅读 下载PDF
改进的松鼠搜索算法求解手术时间不确定的手术病例分配问题
7
作者 朱磊 苏强 《运筹与管理》 北大核心 2025年第2期31-37,共7页
针对手术病例分配问题特点,本文结合医院实际运作情况,考虑手术时间的不确定性,通过引入三角模糊数,建立以最小化模糊运营成本为优化目标的手术病例分配问题模型,提出一种改进松鼠搜索算法用于该模型的求解。算法改进包括:设计了一种基... 针对手术病例分配问题特点,本文结合医院实际运作情况,考虑手术时间的不确定性,通过引入三角模糊数,建立以最小化模糊运营成本为优化目标的手术病例分配问题模型,提出一种改进松鼠搜索算法用于该模型的求解。算法改进包括:设计了一种基于手术编号的单列编码方案以及对应的解码策略;根据问题特点嵌入了有效的启发式策略进一步提高种群质量;改进了松鼠搜索操作使其适用于该模型的求解;采用了多种局部搜索策略提高算法收敛速度及效率。仿真实验和对比分析表明,所提算法在求解手术时间不确定的手术病例分配问题中表现出较强的有效性和稳定性。 展开更多
关键词 手术病例分配 松鼠搜索算法 模糊手术时间 调度优化
在线阅读 下载PDF
考虑差异化需求响应不确定性的综合能源系统低碳经济优化调度 被引量:2
8
作者 赵安新 张智晟 《电力需求侧管理》 2025年第2期35-41,共7页
为进一步减轻综合能源系统中峰谷时期负荷压力,提升系统运行的低碳经济性,降低系统运行风险,考虑了不同负荷需求响应的差异性及需求响应的不确定性,对需求响应的不确定性进行模糊处理,建立了考虑差异化需求响应不确定性的综合能源系统... 为进一步减轻综合能源系统中峰谷时期负荷压力,提升系统运行的低碳经济性,降低系统运行风险,考虑了不同负荷需求响应的差异性及需求响应的不确定性,对需求响应的不确定性进行模糊处理,建立了考虑差异化需求响应不确定性的综合能源系统低碳经济调度模型。首先将不同类型负荷进行差异化定价处理,并利用阶梯型碳排放成本模型对碳排放进行约束;在此基础上,建立包含系统的运维成本、售能收益以及碳排放成本的系统运行总成本最小为目标的规划模型,然后对松鼠算法进行改进,利用混沌松鼠优化算法对模型进行求解。通过实际算例分析,结果表明考虑差异化需求响应不确定性可以提高系统可靠性,平缓负荷曲线,提高系统低碳经济性,验证了所建立调度模型的有效性,同时数据也表明混沌松鼠算法具有更好的寻优能力。 展开更多
关键词 综合能源系统 差异化需求响应 混沌松鼠优化算法 低碳经济 实时电价 模糊机会约束
在线阅读 下载PDF
基于改进二次分解与CNN-BiLSTM的超短期风电功率预测 被引量:1
9
作者 张新平 黄翔庚 +1 位作者 张尚辉 刘广臣 《电力大数据》 2025年第7期1-13,共13页
针对当前超短期风电功率预测精度不足的难题,该文设计了一种基于改进二次分解与深度学习的混合预测模型。首先,采用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)对功... 针对当前超短期风电功率预测精度不足的难题,该文设计了一种基于改进二次分解与深度学习的混合预测模型。首先,采用自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)对功率数据进行分解,并通过排列熵进行复杂度评估与重构;随后,对重构后的高频序列使用变分模态分解(variational mode decomposition,VMD)进行二次分解,并采用松鼠搜索算法(squirrel search algorithm,SSA)对模态数k与惩罚因子α进行寻优;然后,经CEEMDAN分解、SSA优化和VMD二次分解后的序列输入到卷积神经网络以提取空间特征,再送到双向长短期记忆网络进行正反向时间序列特征学习和模型预测;最后,并通过叠加各子序列预测结果获得最终风电功率输出。多组对比实验表明,所提混合模型在准确性和泛化性方面表现较优,可为超短期风电功率预测提供参考。 展开更多
关键词 超短期风电功率 二次分解 松鼠搜索算法 排列熵 CNN-BiLSTM
在线阅读 下载PDF
基于改进差分松鼠搜索算法MPPT控制策略
10
作者 崔敏 张云锐 +2 位作者 武奇生 李林宜 李艳波 《智能建筑电气技术》 2025年第3期17-24,47,共9页
为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随... 为了解决传统最大功率点跟踪(MPPT)控制方法易陷入局部功率最优值,收敛速度慢,精度较低的问题,在松鼠搜索算法(SSA)的基础上提出了一种基于差分改进松鼠搜素算法(IDSSA)的MPPT控制策略。首先使用改进Tent混沌映射代替标准SSA算法中的随机数分布对算法进行初始化,使算法初始化种群具有良好的多样性且分布均匀;其次采用差分进化算法中经过优化的差分变异机制,通过对初始种群的变异和交叉操作,进一步提升算法全局搜索与局部收敛能力;为了兼顾算法的全局搜索与局部开发性能,通过对SSA算法中捕食者概率与莱维飞行因子进行非线性递减优化,使算法具有更好的寻优精度。仿真结果表明,在均匀光照,静态阴影和瞬时变化阴影条件下,IDSSA算法较基础SSA算法以及其他几种改进启发式算法拥有更好的跟踪精度和收敛速度,有效解决光伏系统在复杂环境下的功率跟踪难题。 展开更多
关键词 光伏系统 局部遮荫 最大功率点追踪 松鼠搜索算法 Tent混沌映射 差分进化算法 莱维飞行因子
原文传递
基于ISSA-IP&O算法的光伏MPPT研究
11
作者 圣刚 李红月 《黑龙江工业学院学报(综合版)》 2025年第9期113-119,共7页
针对光伏系统在局部阴影和光照突变条件下的多峰MPPT难题,提出一种混合优化算法ISSA-IP&O,融合改进型松鼠搜索算法(ISSA)与改进型扰动观察法(IP&O)。ISSA通过Logistic-Sine混沌映射增强初始化多样性,并引入自适应因子优化全局-... 针对光伏系统在局部阴影和光照突变条件下的多峰MPPT难题,提出一种混合优化算法ISSA-IP&O,融合改进型松鼠搜索算法(ISSA)与改进型扰动观察法(IP&O)。ISSA通过Logistic-Sine混沌映射增强初始化多样性,并引入自适应因子优化全局-局部搜索能力;在接近最大功率点时切换至IP&O进行精细调节。基于MATLAB/Simulink的仿真表明:在均匀光照、局部阴影及光照突变条件下,ISSA-IP&O均优于PSO、GWO和SSA。均匀光照时收敛速度最快(0.090s,效率99.99%);局部阴影下效率达99.98%,收敛速度(0.142s)显著优于对比算法;光照突变时兼具快速收敛(0.082s)、高效率(99.98%)和低功率振荡。该算法有效提升了动态性能与稳态精度,并减小了功率振荡,为复杂光照条件下的MPPT提供了可靠解决方案。 展开更多
关键词 最大功率点跟踪 光照条件 改进松鼠搜索算法 改进扰动观察法
在线阅读 下载PDF
基于改进松鼠搜索算法的奇异摄动反应扩散方程系数反演问题
12
作者 麦雄发 卞文贺 +1 位作者 刘利斌 毛志 《应用数学》 北大核心 2025年第2期595-606,共12页
本文提出一种新的数值算法,用于求解具有最终时间观测数据的奇异摄动反应扩散方程系数反演问题.对于正问题的数值离散,本文使用基于sinh变换的重心有理插值对空间导数进行离散,并使用Crank-Nicholson有限差分对时间导数进行近似.然后,... 本文提出一种新的数值算法,用于求解具有最终时间观测数据的奇异摄动反应扩散方程系数反演问题.对于正问题的数值离散,本文使用基于sinh变换的重心有理插值对空间导数进行离散,并使用Crank-Nicholson有限差分对时间导数进行近似.然后,将此反问题转换为一个最小化问题.为求解此最小化问题,本文通过结合最优邻域搜索策略、随机对立学习策略和自适应捕食者存在概率策略,提出了一种改进的松鼠搜索算法——NOISSA.最后,本文进行了一系列数值实验,以此说明本文提出的新算法在解决奇异摄动反应扩散方程系数反演问题方面的优势. 展开更多
关键词 松鼠搜索算法 反应扩散方程 反问题 重心有理插值 奇异摄动
在线阅读 下载PDF
基于SSA和PSO协同优化的DV-Hop定位算法
13
作者 曹群丹 余修武 刘永 《通信技术》 2025年第7期719-726,共8页
为了提高无线传感器网络中非基于距离的定位算法的精度,提出了一种利用松鼠搜索算法(Squirrel Search Algorithm,SSA)和粒子群优化(Particle Swarm Optimization,PSO)算法协同优化的距离向量跳段(Distance Vector-Hop,DV-Hop)定位算法(S... 为了提高无线传感器网络中非基于距离的定位算法的精度,提出了一种利用松鼠搜索算法(Squirrel Search Algorithm,SSA)和粒子群优化(Particle Swarm Optimization,PSO)算法协同优化的距离向量跳段(Distance Vector-Hop,DV-Hop)定位算法(SSA-PSO)。首先,研究了传统的非测距DV-Hop算法定位过程中的误差来源;其次,引入接收信号强度(Received Signal Strength Indicators,RSSI)和校正因子来量化最小跳跃次数,并校正平均跳跃距离;最后,在未知节点估计过程中,采用改进的SSA代替最小二乘法,结合PSO算法,在标准SSA中引入了帐篷混沌初始化策略、位置贪婪选择策略和高斯变分策略,以提高最优性能。仿真结果表明,在不同的通信半径、锚定节点数量和节点总数下,与DV-Hop、遗传算法(Genetic Algorithm,GA)、SSA和PSO算法相比,SSA-PSO算法具有更高的定位精度。 展开更多
关键词 无线传感器网络 粒子群算法 松鼠搜索算法 节点定位 DV-HOP
在线阅读 下载PDF
混合随机反向学习和高斯变异的混沌松鼠搜索算法 被引量:13
14
作者 冯增喜 何鑫 +3 位作者 崔巍 赵锦彤 张茂强 杨芸芸 《计算机集成制造系统》 EI CSCD 北大核心 2023年第2期604-615,共12页
针对松鼠搜索算法(SSA)易陷入局部最优、过早收敛等问题,提出一种混合随机反向学习和高斯变异的混沌松鼠搜索算法(RGCSSA)。该算法通过Tent混沌映射初始化策略生成混沌初始种群,增强初始种群分布的均匀性,实现对解空间更高效的搜索;采... 针对松鼠搜索算法(SSA)易陷入局部最优、过早收敛等问题,提出一种混合随机反向学习和高斯变异的混沌松鼠搜索算法(RGCSSA)。该算法通过Tent混沌映射初始化策略生成混沌初始种群,增强初始种群分布的均匀性,实现对解空间更高效的搜索;采用非线性递减的捕食者概率策略,平衡SSA的全局搜索和局部开发能力;利用位置贪婪选择策略在迭代过程中不断保留种群中的优势个体,以提升算法收敛速度;引入随机反向学习和高斯变异策略,在增加种群多样性的同时提高算法跳出局部最优的能力。使用10个不同的基准测试函数进行仿真实验,并利用Wilcoxon符号秩检验验证所提算法的寻优性能,结果表明,RGCSSA算法在求解精度、收敛速度和稳定性等方面均有极大提升。 展开更多
关键词 松鼠搜索算法 Tent混沌映射 随机反向学习 高斯变异 Wilcoxon符号秩检验
在线阅读 下载PDF
基于改进松鼠搜索算法优化神经网络的数控机床进给系统热误差预测 被引量:9
15
作者 杨赫然 李帅 +2 位作者 孙兴伟 董祉序 刘寅 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第1期60-69,共10页
为探究数控机床进给系统中各因素对热误差的影响规律,建立精准的热误差预测模型。在进给速度为10 m/min、环境温度20℃的条件下进行进给系统热误差测量实验,获得进给系统关键点的温升及热误差。为提高预测精度,采用Tent混沌改进松鼠搜... 为探究数控机床进给系统中各因素对热误差的影响规律,建立精准的热误差预测模型。在进给速度为10 m/min、环境温度20℃的条件下进行进给系统热误差测量实验,获得进给系统关键点的温升及热误差。为提高预测精度,采用Tent混沌改进松鼠搜索算法,并利用改进的算法对神经网络进行优化,建立热误差预测模型。利用热误差测量实验获得的数据进行验证,结果表明改进前的神经网络预测误差为12.23%,改进后的模型预测误差为8.92%,精度有较大提升。利用预测模型针对不同进给速度下相同位置处热误差进行分析,结果表明,进给系统中关键测温点的温度和丝杠各点的热误差随着进给速度的增加而增加。因此提出的预测模型可实现进给系统热误差的准确预测,为误差补偿提供理论依据。 展开更多
关键词 进给系统 热误差 松鼠搜索算法 神经网络
原文传递
基于VMD-ISSA-KELM的短期光伏发电功率预测 被引量:72
16
作者 商立群 李洪波 +3 位作者 侯亚东 黄辰浩 张建涛 杨雷 《电力系统保护与控制》 EI CSCD 北大核心 2022年第21期138-148,共11页
针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和改进松鼠觅食算法优化核极限学习机(improved squirrel search algorithm optimization kernel extrem... 针对光伏发电功率存在随机性和波动性较强、预测精度较低的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)和改进松鼠觅食算法优化核极限学习机(improved squirrel search algorithm optimization kernel extreme learning machine,ISSA-KELM)的预测模型。首先,利用高斯混合模型(Gaussian mixture model,GMM)将光伏发电功率数据进行聚类,得到不同天气类型下的相似日样本。其次,利用VMD对原始光伏发电功率序列进行平稳化处理,得到若干个规律性较强的子序列。然后,对不同子序列构建KELM预测模型,并使用ISSA优化KELM的核参数和正则化系数。最后,将不同子序列的预测值进行重构,得到最终预测结果。结合实际算例,结果表明:所提出的VMD-ISSA-KELM模型在不同天气条件下均能得到满意的预测精度,且明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 光伏发电 短期功率预测 相似日 高斯混合模型 变分模态分解 改进松鼠觅食算法 核极限学习机
在线阅读 下载PDF
基于自适应VMD-KPCA特征提取与SSA-SVM方法的滚动轴承故障诊断 被引量:19
17
作者 张天瑞 李金洋 《机械设计》 CSCD 北大核心 2022年第7期63-73,共11页
为降低滚动轴承故障特征维度,更好地选取算法参数,提高故障诊断率,提出了自适应VMD-KPCA特征提取与SSA-SVM相结合的滚动轴承故障诊断方法。首先,利用飞鼠搜索算法(SSA)对VMD中分解层数k和惩罚因子α的最优组合进行寻优,形成自适应的VMD... 为降低滚动轴承故障特征维度,更好地选取算法参数,提高故障诊断率,提出了自适应VMD-KPCA特征提取与SSA-SVM相结合的滚动轴承故障诊断方法。首先,利用飞鼠搜索算法(SSA)对VMD中分解层数k和惩罚因子α的最优组合进行寻优,形成自适应的VMD对振动信号进行分解;其次,利用SSA对SVM中核函数参数g和惩罚因子c进行寻优,构建了SSA-SVM故障诊断模型;最后,对利用自适应VMD分解出的时域、频域、能量熵等IMF分量的故障特征进行计算,并经KPCA降维后输入SSA-SVM模型中,与多种故障诊断模型进行仿真对比分析。结果表明,SSA-SVM从适应度、准确率、运行时间上,都具有优越性;同时将用KPCA降维与未降维的SSA-SVM进行对比,证明用KPCA降维的SSA-SVM虽牺牲了少量准确率,却换取了运行时间上的大幅度提高。 展开更多
关键词 变分模态分解 飞鼠搜索算法 核主成分分析 支持向量机 故障诊断 多域故障特征
原文传递
基于ISSA和IA^(*)的AGV集成作业调度及其路径规划 被引量:3
18
作者 张天瑞 刘悦 《组合机床与自动化加工技术》 北大核心 2024年第2期186-192,共7页
针对单一算法在求解车间调度和路径问题时最优性和多样性方面的缺陷,提出了优化飞鼠搜索算法ISSA(improved squirrel search algorithm)和优化A^(*)算法并建立集成作业调度和AGV路径规划的双层模型。首先,采用贪婪策略融合飞鼠搜索算法... 针对单一算法在求解车间调度和路径问题时最优性和多样性方面的缺陷,提出了优化飞鼠搜索算法ISSA(improved squirrel search algorithm)和优化A^(*)算法并建立集成作业调度和AGV路径规划的双层模型。首先,采用贪婪策略融合飞鼠搜索算法建立考虑能耗的AGV集成作业调度上层模型;其次,将安全距离因子引入A^(*)算法,构建AGV路径规划下层模型,并通过梯度下降法进行路径平滑;进而,运用6个测试函数和kacem实例验证ISSA的寻优能力,结果表明ISSA的其收敛速度较快,运行效率较高,且不容易陷入局部最优;最后,基于栅格法建模进行对比仿真实验,IA^(*)比A^(*)算法拐点数量降低了22%,同时节约了21%的行驶时间,ISSA和IA^(*)均得到了良好的验证。结果表明,ISSA和IA^(*)能够更有效求解AGV集成作业调度及其路径规划问题。 展开更多
关键词 A^(*)算法 飞鼠搜索算法 AGV集成作业调度 AGV路径规划 贪婪策略
在线阅读 下载PDF
Removal of Ocular Artifacts from Electroencephalo-Graph by Improving Variational Mode Decomposition 被引量:1
19
作者 Miao Shi Chao Wang +3 位作者 Wei Zhao Xinshi Zhang Ye Ye Nenggang Xie 《China Communications》 SCIE CSCD 2022年第2期47-61,共15页
Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing metho... Ocular artifacts in Electroencephalography(EEG)recordings lead to inaccurate results in signal analysis and process.Variational Mode Decomposition(VMD)is an adaptive and completely nonrecursive signal processing method.There are two parameters in VMD that have a great influence on the result of signal decomposition.Thus,this paper studies a signal decomposition by improving VMD based on squirrel search algorithm(SSA).It’s improved with abilities of global optimal guidance and opposition based learning.The original seasonal monitoring condition in SSA is modified.The feedback of whether the optimal solution is successfully updated is used to establish new seasonal monitoring conditions.Opposition-based learning is introduced to reposition the position of the population in this stage.It is applied to optimize the important parameters of VMD.GOSSA-VMD model is established to remove ocular artifacts from EEG recording.We have verified the effectiveness of our proposal in a public dataset compared with other methods.The proposed method improves the SNR of the dataset from-2.03 to 2.30. 展开更多
关键词 ocular artifact variational mode decomposition squirrel search algorithm global guidance ability opposition-based learning
在线阅读 下载PDF
Novel Optimized Feature Selection Using Metaheuristics Applied to Physical Benchmark Datasets 被引量:1
20
作者 Doaa Sami Khafaga El-Sayed M.El-kenawy +3 位作者 Fadwa Alrowais Sunil Kumar Abdelhameed Ibrahim Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2023年第2期4027-4041,共15页
In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features ... In data mining and machine learning,feature selection is a critical part of the process of selecting the optimal subset of features based on the target data.There are 2n potential feature subsets for every n features in a dataset,making it difficult to pick the best set of features using standard approaches.Consequently,in this research,a new metaheuristics-based feature selection technique based on an adaptive squirrel search optimization algorithm(ASSOA)has been proposed.When using metaheuristics to pick features,it is common for the selection of features to vary across runs,which can lead to instability.Because of this,we used the adaptive squirrel search to balance exploration and exploitation duties more evenly in the optimization process.For the selection of the best subset of features,we recommend using the binary ASSOA search strategy we developed before.According to the suggested approach,the number of features picked is reduced while maximizing classification accuracy.A ten-feature dataset from the University of California,Irvine(UCI)repository was used to test the proposed method’s performance vs.eleven other state-of-the-art approaches,including binary grey wolf optimization(bGWO),binary hybrid grey wolf and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hybrid GWO and genetic algorithm 4028 CMC,2023,vol.74,no.2(bGWO-GA),binary firefly algorithm(bFA),and bGAmethods.Experimental results confirm the superiority and effectiveness of the proposed algorithm for solving the problem of feature selection. 展开更多
关键词 Metaheuristics adaptive squirrel search algorithm optimization methods binary optimizer
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部