Continuum-based discrete element method(CDEM)is an explicit numerical method used for simulation of progressive failure of geological body.To improve the efficiency of contact detection and simplify the calculation st...Continuum-based discrete element method(CDEM)is an explicit numerical method used for simulation of progressive failure of geological body.To improve the efficiency of contact detection and simplify the calculation steps for contact forces,semi-spring and semi-edge are introduced in calculation.Semispring is derived from block vertex,and formed by indenting the block vertex into each face(24semisprings for a hexahedral element).The formation process of semi-edge is the same as that of semi-spring(24semi-edges for a hexahedral element).Based on the semi-springs and semi-edges,a new type of combined contact model is presented.According to this model,six contact types could be reduced to two,i.e.the semi-spring target face contact and semi-edge target edge contact.By the combined model,the contact force could be calculated directly(the information of contact type is not necessary),and the failure judgment could be executed in a straightforward way(each semi-spring and semi-edge own their characteristic areas).The algorithm has been successfully programmed in C++program.Some simple numerical cases are presented to show the validity and accuracy of this model.Finally,the failure mode,sliding distance and critical friction angle of Jiweishan landslide are studied with the combined model.展开更多
Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the st...Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.展开更多
A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numeric...A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.展开更多
On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydr...On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydrographic data obtained in the Luzon Strait during the spring of 2002 cruise, the circulation in the investigated area is computed by using the modified inverse method. The major observed results are as follows: (1) the average velocity and the flow direction in the observing days are (47.4 cm/s, 346°) at the 200 m level. The average velocity in the observing days is (20.3 cm/s, 350? at the 500 m level. These mean that the Kuroshio intrudes into the South Chin Sea to flow northwestward through the Luzon Strait at 200 and 500 m levels. (2) The average velocity in the observing days is (1.2 cm/s, 35°) at the 800 m level, i. e., its direction is northeastward. This means that the flow condition at the 800 m level very differs from mat at the 200 and 500 m levels. (3) There is the high density and cold water (HDCW) in the middle of western part of in the investigated region, and its center is located near the hydrological station 3 at Section A. (4) There is the lower density and warm water (LDWW) in the southeastern part of investigated region. (5) The currents in April 2002 are stronger than those in March 2002.The major computed results are as follows: (1) The northwestward and southeastward VTs through Section B are 32.48×106 m3/s (inclusive of VT of anticyclonic eddy) and 3.34×106m3/s, respectively. The net northwestward VT through Section B in the investigated area is about 29.14×106 m3/s. (2) The eastern and western VTs through Section A are about 16.71×106 and 8.57×106 m3/s, respectively. Thus, the net eastward VT through Section A is about 8.14×106 m3/s. (3) The net northward VT through Section M is about 24.68×106 m3/s. (4) After about 24.68×106 m3/s flows through Section M, most of it, about 16.54×106 m3/s, flows northward through the eastern part of Section C and then flows northward into the region east Taiwan Island. The other part of it, about 8.14×106 m3/s, branches out from the main Kuroshio and then flows meanderingly through the western part of Section C. Thus, the Kuroshio has the two cores of current at Section C. (5) The direction of the computed current near the mooring station M agrees with the direction of the current measurements at 200 and 500 m from moored current meters, i.e., their directions both are northwestward. (6) About 3.34×106 m3/s of the South Chin Sea water probably flows slowly from the northwest to the southeast in the layer below 550 m at the western part of Section B.展开更多
The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-...The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-dimension problem of the surface cracks into a quasi-one-dimension problem and can be used to analyze the surface cracked plate under various loading conditions. In this paper theoretical analyses and numerical verifications are carried out. The calculated results are reported, which indicate that the present method is efficient and can be used to analyze the surface crack problem on a personal computer.展开更多
In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the s...In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.展开更多
基金the National Basic Research Program of the Ministry of Science and Technology of China (Grant No. 2010CB731506)the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2012BAK10B01)the Youth Science Fund of National Natural Science Foundation of China (Grant No. 11302230)
文摘Continuum-based discrete element method(CDEM)is an explicit numerical method used for simulation of progressive failure of geological body.To improve the efficiency of contact detection and simplify the calculation steps for contact forces,semi-spring and semi-edge are introduced in calculation.Semispring is derived from block vertex,and formed by indenting the block vertex into each face(24semisprings for a hexahedral element).The formation process of semi-edge is the same as that of semi-spring(24semi-edges for a hexahedral element).Based on the semi-springs and semi-edges,a new type of combined contact model is presented.According to this model,six contact types could be reduced to two,i.e.the semi-spring target face contact and semi-edge target edge contact.By the combined model,the contact force could be calculated directly(the information of contact type is not necessary),and the failure judgment could be executed in a straightforward way(each semi-spring and semi-edge own their characteristic areas).The algorithm has been successfully programmed in C++program.Some simple numerical cases are presented to show the validity and accuracy of this model.Finally,the failure mode,sliding distance and critical friction angle of Jiweishan landslide are studied with the combined model.
基金Project(20120095110001)supported by the PhD Programs Foundation of Ministry of Education of ChinaProject(51134022,51221462)supported by the National Natural Science Foundation of China+1 种基金Project(CXZZ13_0927)supported by Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2013DXS03)supported by the Fundamental Research Funds for Central Universities of China
文摘Based on the statics theory, a novel and feasible twice-suspended-mass method(TSMM) was proposed to deal with the seldom-studied issue of fault diagnosis for damping springs of large vibrating screen(LVS). With the static balance characteristic of the screen body/surface as well as the deformation compatibility relation of springs considered, static model of the screen surface under a certain load was established to calculate compression deformation of each spring. Accuracy of the model was validated by both an experiment based on the suspended mass method and the properties of the 3D deformation space in a numerical simulation. Furthermore, by adopting the Taylor formula and the control variate method, quantitative relationship between the change of damping spring deformation and the change of spring stiffness, defined as the deformation sensitive coefficient(DSC), was derived mathematically, from which principle of the TSMM for spring fault diagnosis is clarified. In the end, an experiment was carried out and results show that the TSMM is applicable for diagnosing the fault of single spring in a LVS.
基金National Natural Science Foundation of China under Grant Nos.91315301,51478279the State Key Laboratory Basic Theory Foundation of the Ministry of Science and Technology of China under the Grant SLDRCE08-A-07
文摘A modified domain reduction method(MDRM) that introduces damping terms to the original DRM is presented in this paper. To verify the proposed MDRM and compare the computational accuracy of these two methods, a numerical test is designed. The numerical results of the MDRM and DRM are compared using an extended meshed model. The results show that the MDRM significantly improved the computational accuracy of the DRM. Then, the MDRM is compared with two existing conventional methods, namely Liao's transmitting boundary and viscous-spring boundary with Liu's method. The MDRM shows its great advancement in computational accuracy, stability and range of applications. This paper also discusses the influence of boundary location on computational accuracy. It can be concluded that smaller models tend to have larger errors. By introducing two dimensionless parameters, φ_1 and φ_2, the rational distance between the observation point and the MDRM boundary is suggested. When φ_1 >2 or φ_2>13, the relative PGA error can be limited to 5%. In practice, the appropriate model size can be chosen based on these two parameters to achieve desired computational accuracy.
基金the Major State Basic Research Program of China under contact No.G 1999043805.
文摘On the basis of the current measurements at 200,500 and 800 m from moored current meters with the time series data from March 17 to April 15 at the mooring station (20°49′57″N, 120°48′ 12″E) and the hydrographic data obtained in the Luzon Strait during the spring of 2002 cruise, the circulation in the investigated area is computed by using the modified inverse method. The major observed results are as follows: (1) the average velocity and the flow direction in the observing days are (47.4 cm/s, 346°) at the 200 m level. The average velocity in the observing days is (20.3 cm/s, 350? at the 500 m level. These mean that the Kuroshio intrudes into the South Chin Sea to flow northwestward through the Luzon Strait at 200 and 500 m levels. (2) The average velocity in the observing days is (1.2 cm/s, 35°) at the 800 m level, i. e., its direction is northeastward. This means that the flow condition at the 800 m level very differs from mat at the 200 and 500 m levels. (3) There is the high density and cold water (HDCW) in the middle of western part of in the investigated region, and its center is located near the hydrological station 3 at Section A. (4) There is the lower density and warm water (LDWW) in the southeastern part of investigated region. (5) The currents in April 2002 are stronger than those in March 2002.The major computed results are as follows: (1) The northwestward and southeastward VTs through Section B are 32.48×106 m3/s (inclusive of VT of anticyclonic eddy) and 3.34×106m3/s, respectively. The net northwestward VT through Section B in the investigated area is about 29.14×106 m3/s. (2) The eastern and western VTs through Section A are about 16.71×106 and 8.57×106 m3/s, respectively. Thus, the net eastward VT through Section A is about 8.14×106 m3/s. (3) The net northward VT through Section M is about 24.68×106 m3/s. (4) After about 24.68×106 m3/s flows through Section M, most of it, about 16.54×106 m3/s, flows northward through the eastern part of Section C and then flows northward into the region east Taiwan Island. The other part of it, about 8.14×106 m3/s, branches out from the main Kuroshio and then flows meanderingly through the western part of Section C. Thus, the Kuroshio has the two cores of current at Section C. (5) The direction of the computed current near the mooring station M agrees with the direction of the current measurements at 200 and 500 m from moored current meters, i.e., their directions both are northwestward. (6) About 3.34×106 m3/s of the South Chin Sea water probably flows slowly from the northwest to the southeast in the layer below 550 m at the western part of Section B.
文摘The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-dimension problem of the surface cracks into a quasi-one-dimension problem and can be used to analyze the surface cracked plate under various loading conditions. In this paper theoretical analyses and numerical verifications are carried out. The calculated results are reported, which indicate that the present method is efficient and can be used to analyze the surface crack problem on a personal computer.
基金Supported by Lloyd’s Register Foundation(LRF)-Funded Research Center at SNU(LRFC)
文摘In this paper, we present the results of our numerical seakeeping analyses of a 6750-TEU containership, which were subjected to the benchmark test of the 2 nd ITTC–ISSC Joint Workshop held in 2014. We performed the seakeeping analyses using three different methods based on a 3D Rankine panel method, including 1) a rigid-body solver, 2) a flexible-body solver using a beam model, and 3) a flexible-body solver using the eigenvectors of a 3D Finite Element Model(FEM). The flexible-body solvers adopt a fully coupled approach between the fluid and structure. We consider the nonlinear Froude–Krylov and restoring forces using a weakly nonlinear approach. In addition, we calculate the slamming loads on the bow flare and stern using a 2D generalized Wagner model. We compare the numerical and experimental results in terms of the linear response, the time series of the nonlinear response, and the longitudinal distribution of the sagging and hogging moments. The flexible-body solvers show good agreement with the experimental model with respect to both the linear and nonlinear results, including the high-frequency oscillations due to springing and whipping vibrations. The rigid-body solver gives similar results except for the springing and whipping.