Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through ...Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through the harsh gastrointestinal environment and intestinal mucus barrier.To overcome the gastrointestinal barriers for oral drug delivery mentioned above,a“spore-like”oral nanodrug delivery platform(Cur/COS/SC NPs)has been developed.Firstly,chitooligosaccharides(COS)are encapsulated on the surface of Curcumin nanoparticles(Cur NPs)to form carrier-free nanoparticles(Cur/COS NPs).Subsequently,inspired by the natural high resistance of spore coat(SC),SC is chosen as the“protective umbrella”to encapsulate Cur/COS NPs for precision targeted therapy of IBD.After oral administration,SC can effectively protect NPs through the rugged gastrointestinal environment and exhibit excellent intestinal mucus penetration characteristics.Moreover,the negatively-charged Cur/COS/SC NPs specifically target positivelycharged inflamed colon via electrostatic interactions.It is demonstrated that Cur/COS/SC NPs can promote the expression of tight junction proteins,inhibit aberrant activation of the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB(TLR4/MyD88/NF-κB)signaling pathway,and downregulate the levels of pro-inflammatory factors,exhibiting excellent anti-inflammatory effects.Notably,it is found that Cur/COS/SC NPs can significantly increase the richness and diversity of gut microbiota,and restore the homeostasis of gut microbiota by inhibiting pathogenic bacteria and promoting probiotics.Hence,Cur/COS/SC NPs provide a safe,efficient,and feasible new strategy for IBD treatment.展开更多
BACKGROUND:It has been reported that Ganoderma lucidum spore powder, a very well known Chinese traditional medicine, can affect immunoregulation, free radical scavenging, and anti-hypoxia responses. OBJECTIVE: To in...BACKGROUND:It has been reported that Ganoderma lucidum spore powder, a very well known Chinese traditional medicine, can affect immunoregulation, free radical scavenging, and anti-hypoxia responses. OBJECTIVE: To investigate the effect of Ganoderma lucidum spore powder on expression of insulin-like growth factor-1 (IGF-1), nuclear factor-κB (NF-κB) and neuronal apoptosis in rats with pentylenetetrazol (PTZ)-induced epilepsy. DESIGN, TIME AND SETTING: A cellular and molecular biology experiment with randomized controlled study design was performed at the Central Laboratory of Basic Medical College of Jiamusi University from June to August 2005. MATERIALS: Thirty healthy, adult, male, Wistar rats were selected and randomly divided into 3 groups (10 rats per group): control, epilepsy model, and Ganoderma lucidum spore powder. A sub-eclampsia PTZ dose (35 mg/kg) was intraperitoneally injected to induce epilepsy in the latter two groups. Wild Ganoderma lucidum spore powder (30 g/L) was provided by the wild Ganoderma lucidum plant nursery at Jiamusi, China. Immunohistochemical detection and terminal deoxynucleotidyl transferase-mediate dUTP nick end-labeling (TUNEL) kits were purchased from Wuhan Boster Biological Technology Co., Ltd., China. METHODS: Ganoderma lucidum spore powder was intragastrically administered at a dose of 10.0 mL/kg, once a day for 28 days. In the epilepsy and control groups, an equivalent volume of normal saline was intragastrically administered. MAIN OUTCOME MEASURES: Immunoreactivity for IGF-1 and NF-κB/P65 were detected by immunohistochemical staining. Neuronal apoptosis was detected using TUNEL methods. RESULTS: The hippocampus and cerebral cortex of rats with PTZ-induced epilepsy exhibited a higher number of apoptotic cells at high magnification (×400), compared with the control group. Expression of IGF-1 and NF-κB were higher in the epilepsy group, compared with the control group (P 〈 0.01). In Ganoderma lucidum spore-treated rats, fewer apoptotic cells were observed in the hippocampus and cerebral cortex, expression of NF-κB/P65 was lower, and immunoreactivity to IGF-1 increased more distinctly, compared with the epilepsy group. In addition, seizure latency was longer on 17, 21, and 25 days post-PTZ treatment in the Ganoderma lucidum spore powder group, compared with the epilepsy group (P 〈 0.05-0.01). CONCLUSION: Ganoderma lucidum spore powder down-regulated expression of NF-κB in brain tissues of rats with PTZ-induced epilepsy, increased immunoreactivity to IGF-1, and inhibited neuronal apoptosis. These results indicated that Ganoderma lucidum spore powder has a neuroprotective effect.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82272847,82304417,82303529,82171333)China Postdoctoral Science Foundation(Nos.2023TQ0307,2023M743231,2023M730971)+2 种基金Science and Technology Project of Henan Province(No.242102311204)Postdoctoral Fellowship Program of CPSF(No.GZB20230675)Modern Analysis and Computer Center of Zhengzhou University.
文摘Colon-targeted oral drug delivery systems are one of the most promising therapeutic strategies for alleviating and curing inflammatory bowel disease(IBD),but they still face challenges in successfully passing through the harsh gastrointestinal environment and intestinal mucus barrier.To overcome the gastrointestinal barriers for oral drug delivery mentioned above,a“spore-like”oral nanodrug delivery platform(Cur/COS/SC NPs)has been developed.Firstly,chitooligosaccharides(COS)are encapsulated on the surface of Curcumin nanoparticles(Cur NPs)to form carrier-free nanoparticles(Cur/COS NPs).Subsequently,inspired by the natural high resistance of spore coat(SC),SC is chosen as the“protective umbrella”to encapsulate Cur/COS NPs for precision targeted therapy of IBD.After oral administration,SC can effectively protect NPs through the rugged gastrointestinal environment and exhibit excellent intestinal mucus penetration characteristics.Moreover,the negatively-charged Cur/COS/SC NPs specifically target positivelycharged inflamed colon via electrostatic interactions.It is demonstrated that Cur/COS/SC NPs can promote the expression of tight junction proteins,inhibit aberrant activation of the Toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-κB(TLR4/MyD88/NF-κB)signaling pathway,and downregulate the levels of pro-inflammatory factors,exhibiting excellent anti-inflammatory effects.Notably,it is found that Cur/COS/SC NPs can significantly increase the richness and diversity of gut microbiota,and restore the homeostasis of gut microbiota by inhibiting pathogenic bacteria and promoting probiotics.Hence,Cur/COS/SC NPs provide a safe,efficient,and feasible new strategy for IBD treatment.
基金the Grant from Natural Science Foundation of Heilongjiang Province, No.D2004-10
文摘BACKGROUND:It has been reported that Ganoderma lucidum spore powder, a very well known Chinese traditional medicine, can affect immunoregulation, free radical scavenging, and anti-hypoxia responses. OBJECTIVE: To investigate the effect of Ganoderma lucidum spore powder on expression of insulin-like growth factor-1 (IGF-1), nuclear factor-κB (NF-κB) and neuronal apoptosis in rats with pentylenetetrazol (PTZ)-induced epilepsy. DESIGN, TIME AND SETTING: A cellular and molecular biology experiment with randomized controlled study design was performed at the Central Laboratory of Basic Medical College of Jiamusi University from June to August 2005. MATERIALS: Thirty healthy, adult, male, Wistar rats were selected and randomly divided into 3 groups (10 rats per group): control, epilepsy model, and Ganoderma lucidum spore powder. A sub-eclampsia PTZ dose (35 mg/kg) was intraperitoneally injected to induce epilepsy in the latter two groups. Wild Ganoderma lucidum spore powder (30 g/L) was provided by the wild Ganoderma lucidum plant nursery at Jiamusi, China. Immunohistochemical detection and terminal deoxynucleotidyl transferase-mediate dUTP nick end-labeling (TUNEL) kits were purchased from Wuhan Boster Biological Technology Co., Ltd., China. METHODS: Ganoderma lucidum spore powder was intragastrically administered at a dose of 10.0 mL/kg, once a day for 28 days. In the epilepsy and control groups, an equivalent volume of normal saline was intragastrically administered. MAIN OUTCOME MEASURES: Immunoreactivity for IGF-1 and NF-κB/P65 were detected by immunohistochemical staining. Neuronal apoptosis was detected using TUNEL methods. RESULTS: The hippocampus and cerebral cortex of rats with PTZ-induced epilepsy exhibited a higher number of apoptotic cells at high magnification (×400), compared with the control group. Expression of IGF-1 and NF-κB were higher in the epilepsy group, compared with the control group (P 〈 0.01). In Ganoderma lucidum spore-treated rats, fewer apoptotic cells were observed in the hippocampus and cerebral cortex, expression of NF-κB/P65 was lower, and immunoreactivity to IGF-1 increased more distinctly, compared with the epilepsy group. In addition, seizure latency was longer on 17, 21, and 25 days post-PTZ treatment in the Ganoderma lucidum spore powder group, compared with the epilepsy group (P 〈 0.05-0.01). CONCLUSION: Ganoderma lucidum spore powder down-regulated expression of NF-κB in brain tissues of rats with PTZ-induced epilepsy, increased immunoreactivity to IGF-1, and inhibited neuronal apoptosis. These results indicated that Ganoderma lucidum spore powder has a neuroprotective effect.