The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置...针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置更新策略来平衡算法的全局搜索能力和局部搜索能力;然后,使用随机指导策略来增加解的多样性;最后,使用B样条曲线平滑所生成的飞行路径,使路径更适用于无人机。实验结果表明,PSO-GWO复合算法可以生成一条安全可行的路径,其性能明显优于GWO算法和其他改进GWO算法。展开更多
针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重...针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重机在建筑场所的运行特点,对传统人工鱼群算法(artificial fish swarm algorithm, AFSA)进行改进,采用自适应策略让鱼群在寻优过程中的状态不断变化,及时调整自身的移动步长和视野,并基于生存竞争机制对人工鱼的随机行为进行改进,在一定程度上改善了算法的寻优能力,利用三次方样条数据插值拟合曲线得到更适合塔式起重机的光滑避障路径。仿真结果表明,改进后的算法为塔式起重机在障碍物较多的复杂建筑环境下找到一条最优避障路径。展开更多
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
文摘针对无人机在复杂环境下的三维路径规划问题,集成传统的粒子群优化(particle swarm optimization,PSO)算法和灰狼优化(grey wolf optimization,GWO)算法,提出了一种PSO-GWO复合算法。首先,采用了非线性控制参数和加权自适应的个体位置更新策略来平衡算法的全局搜索能力和局部搜索能力;然后,使用随机指导策略来增加解的多样性;最后,使用B样条曲线平滑所生成的飞行路径,使路径更适用于无人机。实验结果表明,PSO-GWO复合算法可以生成一条安全可行的路径,其性能明显优于GWO算法和其他改进GWO算法。
文摘针对传统人工操控塔式起重机在运输货物时易导致路径拐点多、负载摆动大的问题,提出一种改进的人工鱼群塔式起重机智能路径规划的新算法。根据塔式起重机的工作环境,建立三维的地图环境模型来模拟障碍物较多的复杂建筑环境,并结合起重机在建筑场所的运行特点,对传统人工鱼群算法(artificial fish swarm algorithm, AFSA)进行改进,采用自适应策略让鱼群在寻优过程中的状态不断变化,及时调整自身的移动步长和视野,并基于生存竞争机制对人工鱼的随机行为进行改进,在一定程度上改善了算法的寻优能力,利用三次方样条数据插值拟合曲线得到更适合塔式起重机的光滑避障路径。仿真结果表明,改进后的算法为塔式起重机在障碍物较多的复杂建筑环境下找到一条最优避障路径。