Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analy...Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,sy...Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.展开更多
Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully...Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.展开更多
Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its...Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its potential for HMs enrichment and environmental remediation,offering a sustainable solution for hazardous waste management.The article delves into themultifaceted recycling of HMs-rich spinel fromES,encompassing its synthesis,metal enrichment,and thermodynamic stability.The pyro-metallurgical and hydrometallurgical processes for spinel synthesis were discussed,with a focus on the critical role of thermodynamic data in predicting the stability and formation of spinel structures.The crystallographic and magnetic properties of spinels,with their applications in environmental remediation and energy storage are highlighted.The article provides a comprehensive reviewon the recycling of HMs-rich spinel fromES,offering a means to recycle HMs,mitigate ecological harm,and contribute to a circular economy through the recovery and application of valuable materials.The selective leaching of metals from ES also faces challenges,which was limited by the separation,purification steps and high energy consumption.This high energy consumption is a significant operational cost and also contributes to environmental concerns related to carbon emissions.It is essential to address the challenges through continued research and development,improved technologies,and supportive regulatory frameworks.展开更多
In this research work,sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles(SrFe_(2)O_(4))with different ratios of terbium(Tb).Different characterization techniques were used to in...In this research work,sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles(SrFe_(2)O_(4))with different ratios of terbium(Tb).Different characterization techniques were used to investigate the structural,morphological,dielectric and magnetic properties of the prepared samples.X-ray diffraction(XRD)result suggests that face-centered cube spinel nanocrystalline structure is formed.Crystallite size of the SrFe_(2)O_(4)decreases with rising of Tb ratio.The morphology,shape and size of the SrFe_(2)O_(4)were examined by scanning electron microscopy(SEM)analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration.The electrical resistivity of the SrFe_(2)O_(4)increases with rising of Tb ratio,which is confirmed from the cyclic voltammetry.It is observed that dielectric constant of all the samples decreases with the increasing frequency range.It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field.The magnetic behavior of SrFe_(2)O_(4)with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb^(3+)at octahedral sites for Fe^(3+).This decrease in the values of M_(s) is also attributed to spin at surface of nanoparticles.展开更多
An experiment was conducted to assess the impact of fused calcia-stabilized zirconia micro-powder on the thermal shock behavior of magnesia–spinel refractories.The effects of calcia-stabilized zirconia on the microst...An experiment was conducted to assess the impact of fused calcia-stabilized zirconia micro-powder on the thermal shock behavior of magnesia–spinel refractories.The effects of calcia-stabilized zirconia on the microstructure evolution and properties of magnesia–spinel refractories were characterized by the high-temperature elastic modulus,thermal shock damage resistance parameters,retainment of elastic modulus after thermal shock,and scanning electron microscopy.The results indicated that the incorporation of calcia-stabilized zirconia improved the thermomechanical properties and thermal shock behavior of magnesia–spinel specimens.The hot modulus of rupture of magnesia–spinel specimens increased by 2.5-fold due to the incorporation of calcia-stabilized zirconia micro-powder.The presence of a martensitic phase transformation in partially unstable ZrO2 and thermal mismatches among various phases contributed to a controlled formation of microcracks.And the pinning effect caused by the calcia-stabilized zirconia particles surrounding the grain boundaries played a crucial role in preventing the propagation of microcracks.This phenomenon significantly bolstered the thermal shock stability of magnesia–spinel refractories,consequently prolonging their service life.展开更多
Spintronic technology and energy applications benefit greatly from the exceptional characteristics of rare-earth-based spinel chalcogenides.Examining the electrical,magnetic and thermoelectric properties of HgNd_(2)Z_...Spintronic technology and energy applications benefit greatly from the exceptional characteristics of rare-earth-based spinel chalcogenides.Examining the electrical,magnetic and thermoelectric properties of HgNd_(2)Z_(4)(Z=S,Se)in a systematic manner is essential for the strategic advancement of spin polarized current in a spintronic device.In this recent study,the WIEN2K code was employed to comprehensively analyze these properties.The calculated lattice constants,obtained using the generalized gradient approximation(GGAsol-PBE),closely match experimental findings of the similar family compounds.The examination of the stability of ferromagnetic states in the ground state involves comparing energies between anti-ferromagnetic and ferromagnetic states.Moreover,an assessment of the stability of the cubic phase in both spinels was conducted using analyses of the phonon dispersion curve,formation energy and Born stability criteria.The ductility characteristics were examined through the calculation of Poisson's and Pugh's ratios.Furthermore,details regarding the density of states,spin polarization,ex-change coupling and Curie temperature were provided to explore the characteristics associated with ferromagnetism.Potential optoelectronic applications were proposed,leveraging the direct band gaps of 1.4 and 1.0 eV for HgNd_(2)Z_(4)(Z=S,Se)respectively,within the visible spectrum.Particularly noteworthy is the effective light absorption of HgNd2Se4 in the visible range,characterized by prominent peaks that facilitate the transition of electrons from the valence band(VB)to the conduction band(CB).Additionally,the study extends to thermoelectric characteristics,determining various factors such as Seebeck coef-ficient(S),figure of merit(ZT),electrical and thermal conductivities of the evaluated spinels.展开更多
The Ni-ZnFe_(2)O_(4)(NixZn_(1-x)Fe_(2)O_(4),x=0.4-0.7)spinel was synthesized using Zn2+extracted from electric arc furnace dust(EAFD),nickel chloride hexahydrate,and Fe^(3+)extracted from iron scale as raw materials.T...The Ni-ZnFe_(2)O_(4)(NixZn_(1-x)Fe_(2)O_(4),x=0.4-0.7)spinel was synthesized using Zn2+extracted from electric arc furnace dust(EAFD),nickel chloride hexahydrate,and Fe^(3+)extracted from iron scale as raw materials.The zinc was selectively extracted from EAFD using CaO roasting followed by NH_(4)Cl solution leaching.The ferric ion was leached from iron scale using HCl solution as acid lixiviant.The experimental results demonstrate a high level of efficiency in the extraction of zinc,with a rate of 97.5%,and the leaching rate of ferric ion is 96.89%.The composition of the leaching solution is primary zinc and iron with low calcium,which is beneficial to the preparation of spinel ferrite.The influence of Ni content(x)and calcination temperature on the synthesis and magnetic properties of NixZn_(1-x)Fe_(2)O_(4)compounds was investigated by X-ray diffraction,scanning electron microscopy,and vibrating sample magnetometry.The results revealed that both Ni content and calcination temperature significantly affect the synthesis and magnetic properties of spinel NixZn_(1-x)Fe_(2)O_(4).Under the conditions of Ni content set at x=0.6,calcination temperature of 1100℃,and a duration of 2 h,a spinel NixZn_(1-x)Fe_(2)O_(4)with high saturation magnetization(Ms=65.7 A m2 kg-1)and low coercivity(Hc=0.056 A m^(-1))was obtained.展开更多
Ensuring high electrocatalytic performance simultaneously with low or even no precious-metal usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction(OER)in anion exchang...Ensuring high electrocatalytic performance simultaneously with low or even no precious-metal usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction(OER)in anion exchange membrane water electrolysis.Here,homogeneous high entropy oxide(HEO)film is in-situ fabricated on nickel foam(NF)substrate via magnetron sputtering technology without annealing process in air,which is composed of many spinel-structured(FeCoNiCrMo)_(3)O_(4) grains with an average particle size of 2.5 nm.The resulting HEO film(abbreviated as(FeCoNiCr-Mo)_(3)O_(4))exhibits a superior OER performance with a low OER overpotential of 216 mV at 10 mA cm^(–2) and steadily operates at 100 mA cm^(–2) for 200 h with a decay of only 272μV h^(–1),which is far better than that of commercial IrO_(2) catalyst(290 mV,1090μV h^(–1)).Tetramethylammonium cation(TMA^(+))probe experiment,activation energy analysis and theoretical calculations unveil that the OER on(FeCoNiCrMo)_(3)O_(4) follows an adsorbate evolution mechanism pathway,where the energy barrier of rate-determining step for OER on(FeCoNiCrMo)_(3)O_(4) is substantially lowered.Also,methanol molecular probe experiment suggests that a weakened ^(*)OH bonding on the(FeCoNiCrMo)_(3)O_(4) surface and a rapid deprotonation of ^(*)OH,further enhancing its OER performance.This work provides a feasible solution for designing efficient high entropy oxides electrocatalysts for OER,accelerating the practical process of water electrolysis for H2 production.展开更多
In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at diff...In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at different temperatures,and the sintering properties of the synthesized materials were characterized.The results show that the optimal light-burned temperature for synthesizing active magnesium aluminate spinel raw materials with small grain sizes and high sintering activity is 1400℃.The active spinel raw materials were sintered at 1750℃ for 3 h to form a dense spinel material,in which the spinel grains were well developed,exhibited a dense interlocking structure,and were uniformly distributed,with an average grain size of about 7.26μm.The bulk density and apparent porosity of the dense spinel material were 3.29 g·cm^(-3) and 3.5%,respectively.展开更多
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done wi...Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.展开更多
Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to t...Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to the structure designments while methods are often energy-intensive and inefficient.Here,we devised a universal strategy to achieve rapid synthesis of nanocrystalline spinel materials with multiple components(Co_(3)O_(4),Mn_(3)O_(4),CoMn_(2)O_(4)and CoFe_(2)O_(4)are as examples),where phase formation is within 15 s.Under the Joule-heating shock,a crack-break process of microcosmic phase transformation is observed by in-situ transmission electron microscopy.The half-wave potential values of Co_(3)O_(4)-JH,Mn_(3)O_(4)-JH,CoMn_(2)O_(4)-JH and CoFe_(2)O_(4)-JH in the electrocatalytic oxygen reduction reaction were 0.77,0.78,0.79 and 0.76,respectively.This suggests that the Joule heating is a fast and efficient method for the preparation of spinel oxide electrocatalysts.展开更多
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal...Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.展开更多
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h...Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.展开更多
Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)S...Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)Sr_(0.4)Ce_(x)Fe_(2-x)O_(4). Following that,a comprehensive X-ray diffraction analysis unveiled the crystalline cubic structure of the synthesized materials.Through the utilization of the M-H loop approach,the ferromagnetic attributes of ferrites were assessed,and the assimilation of rare earth elements led to substantial enhancements in saturation magnetization,remanence,and coercivity.Spinel ferrites with a high concentration of rare earth elements have improved direct current resistivity and activation energy.The logarithm of a material's resistance increased from 5.29 to 8.12 Ω·cm as cerium is added.With a change in the amount of cerium,the activation energy goes up from 0.19 to 0.29.By changing the frequency from 5.5 to 9.5 GHz,the dielectric characteristics were determined.As the frequency goes up,the dielectric constant goes down.Spinel ferrites that have been made better in every way can be used in high-frequency applications.展开更多
In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthes...In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthesis of spinel NiCo_(2)O_(4)/perovskite LaCoO_(3) nano-composite,and its individual oxides NiCo_(2)O_(4)and LaCoO_(3) for comparison.The detailed insights into the physio-chemical characteristics of formed NiCo_(2)O_(4)/LaCoO_(3) nano-composite were done based on various characterization analysis such as X-ray diffraction(XRD),Fourier transform infrared(FT-IR),N_(2) physiosorption,scanning electron microscopy-energy dispersive spectroscopy(SEM-EDX),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The characterization analysis of NiCo_(2)O_(4)/LaCoO_(3) revealed the successful formation of a chemical interface possessing strong interfacial interaction,resulting in desirable physicochemical characteristics such as small crystallite size,abundant mesoporosity,high specific surface area and activation of surface lattice oxygen.Owing to the desirable characteristics,the activity results over NiCo_(2)O_(4)/LaCoO_(3) nano-composite showed the excellent CO oxidation performance and high soot oxidation activity,recyclability and thermal stability.This work mainly attempts to emphasize the effectiveness of the facile,inexpensive and conventionally used precipitation method for the successful formation of highly efficient nano-composites.展开更多
基金supported by the Korea Polar Research Institute project PE24050.
文摘Fabrics of five spinel peridotites collected from Baker Rocks in northern Victoria Land,Antarctica,were investigated to elucidate the evolution of the lithospheric mantle surrounding the Transantarctic Mountains.Analyses revealed the development of crystallographic preferred orientations(CPOs),a slight decrease in mean grain size and J-index across varying proportions of clinopyroxene,and interlobate to amoeboid textures.These findings indicate that dislocation creep is the dominant deformation mechanism for the analyzed samples.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
基金National Natural Science Foundation of China (U23A6005 and 22078069)Project funded by China Postdoctoral Science Foundation (GZB20230172 and 2023M740748)。
文摘Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.
基金supported by the National Natural Science Foundation of China(Nos.22206146,22006079,and U21A20524)the Fundamental Research Funds for the Central Universities,the Youth Innovation Promotion Association of Chinese Academy of Sciences,the Fundamental Research Program of Shanxi Province(No.202103021223280)+1 种基金the Special Fund for Science and Technology Innovation Teams of Shanxi Province(No.202204051002026)the Natural Science Foundation of Shandong Province(No.ZR2021QB133).
文摘Owing to the complexity of multicomponent gases,developing multifunctional catalysts for synergistic removal of benzene and toluene remains challenging.The spinel MMn_(2)O_(4)(M=Co,Ni,or Cu)catalysts were successfully synthesized via the sol–gel method and tested for their catalytic performance for simultaneous degradation of benzene and toluene.The CuMn_(2)O_(4)sample exhibited the best catalytic performance,the conversion of benzene reached 100%at 350℃,and toluene conversion reached 100%at 250℃.XRD,N_(2)adsorption-desorption,HRTEM-EDS,ED-XRF,Raman spectroscopy,H_(2)-TPR,NH_(3)-TPD,O_(2)-TPD and XPS were used to characterize the physical and chemical properties of MMn_(2)O_(4)catalysts.The excellent redox properties,high concentration of surface Mn4+,and adsorption of oxygen species over the CuMn_(2)O_(4)sample facilitated the simultaneous and efficient removal of benzene and toluene.Additionally,in situ DRIFTS illustrated the intermediate species and reaction mechanism for the synergetic catalytic oxidation of benzene and toluene.Notably,as an effective catalytic material,spinel oxide exhibited excellent synergistic degradation performance for benzene and toluene,providing some insight for the development of efficient multicomponent VOC catalysts.
基金supported by the National Natural Science Foundation of China(Nos.52370158 and 22006053)Guangzhou Science and Technology Plan Project(No.2024A04J0821)Guangdong Provincial Education Science Planning Project(Higher Education Special Project)(No.2023GXJK108).
文摘Electroplating sludge(ES),a byproduct of the electroplating industry,is a significant environmental concern due to its high content of soluble heavy metals(HMs).The significance of spinel formation from ES lies in its potential for HMs enrichment and environmental remediation,offering a sustainable solution for hazardous waste management.The article delves into themultifaceted recycling of HMs-rich spinel fromES,encompassing its synthesis,metal enrichment,and thermodynamic stability.The pyro-metallurgical and hydrometallurgical processes for spinel synthesis were discussed,with a focus on the critical role of thermodynamic data in predicting the stability and formation of spinel structures.The crystallographic and magnetic properties of spinels,with their applications in environmental remediation and energy storage are highlighted.The article provides a comprehensive reviewon the recycling of HMs-rich spinel fromES,offering a means to recycle HMs,mitigate ecological harm,and contribute to a circular economy through the recovery and application of valuable materials.The selective leaching of metals from ES also faces challenges,which was limited by the separation,purification steps and high energy consumption.This high energy consumption is a significant operational cost and also contributes to environmental concerns related to carbon emissions.It is essential to address the challenges through continued research and development,improved technologies,and supportive regulatory frameworks.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under(RGP.2/111/44)。
文摘In this research work,sol-gel technique was employed to prepare the strontium based spinel ferrite nanoparticles(SrFe_(2)O_(4))with different ratios of terbium(Tb).Different characterization techniques were used to investigate the structural,morphological,dielectric and magnetic properties of the prepared samples.X-ray diffraction(XRD)result suggests that face-centered cube spinel nanocrystalline structure is formed.Crystallite size of the SrFe_(2)O_(4)decreases with rising of Tb ratio.The morphology,shape and size of the SrFe_(2)O_(4)were examined by scanning electron microscopy(SEM)analysis and results reveal inhomogeneous distributions of the nanostructures with high agglomeration.The electrical resistivity of the SrFe_(2)O_(4)increases with rising of Tb ratio,which is confirmed from the cyclic voltammetry.It is observed that dielectric constant of all the samples decreases with the increasing frequency range.It is determined that the dielectric constants of the spinel ferrites are frequency dependent and decrease with increasing the frequency of applied electric field.The magnetic behavior of SrFe_(2)O_(4)with different ratios of Tb was studied and it is found that the saturation magnetization values of samples decrease with increase in the substitution of Tb^(3+)at octahedral sites for Fe^(3+).This decrease in the values of M_(s) is also attributed to spin at surface of nanoparticles.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.U21A2058)the Hebei Guoliang New Materials Co.,Ltd.(Grant No.22150239J).
文摘An experiment was conducted to assess the impact of fused calcia-stabilized zirconia micro-powder on the thermal shock behavior of magnesia–spinel refractories.The effects of calcia-stabilized zirconia on the microstructure evolution and properties of magnesia–spinel refractories were characterized by the high-temperature elastic modulus,thermal shock damage resistance parameters,retainment of elastic modulus after thermal shock,and scanning electron microscopy.The results indicated that the incorporation of calcia-stabilized zirconia improved the thermomechanical properties and thermal shock behavior of magnesia–spinel specimens.The hot modulus of rupture of magnesia–spinel specimens increased by 2.5-fold due to the incorporation of calcia-stabilized zirconia micro-powder.The presence of a martensitic phase transformation in partially unstable ZrO2 and thermal mismatches among various phases contributed to a controlled formation of microcracks.And the pinning effect caused by the calcia-stabilized zirconia particles surrounding the grain boundaries played a crucial role in preventing the propagation of microcracks.This phenomenon significantly bolstered the thermal shock stability of magnesia–spinel refractories,consequently prolonging their service life.
基金the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/450/44。
文摘Spintronic technology and energy applications benefit greatly from the exceptional characteristics of rare-earth-based spinel chalcogenides.Examining the electrical,magnetic and thermoelectric properties of HgNd_(2)Z_(4)(Z=S,Se)in a systematic manner is essential for the strategic advancement of spin polarized current in a spintronic device.In this recent study,the WIEN2K code was employed to comprehensively analyze these properties.The calculated lattice constants,obtained using the generalized gradient approximation(GGAsol-PBE),closely match experimental findings of the similar family compounds.The examination of the stability of ferromagnetic states in the ground state involves comparing energies between anti-ferromagnetic and ferromagnetic states.Moreover,an assessment of the stability of the cubic phase in both spinels was conducted using analyses of the phonon dispersion curve,formation energy and Born stability criteria.The ductility characteristics were examined through the calculation of Poisson's and Pugh's ratios.Furthermore,details regarding the density of states,spin polarization,ex-change coupling and Curie temperature were provided to explore the characteristics associated with ferromagnetism.Potential optoelectronic applications were proposed,leveraging the direct band gaps of 1.4 and 1.0 eV for HgNd_(2)Z_(4)(Z=S,Se)respectively,within the visible spectrum.Particularly noteworthy is the effective light absorption of HgNd2Se4 in the visible range,characterized by prominent peaks that facilitate the transition of electrons from the valence band(VB)to the conduction band(CB).Additionally,the study extends to thermoelectric characteristics,determining various factors such as Seebeck coef-ficient(S),figure of merit(ZT),electrical and thermal conductivities of the evaluated spinels.
基金supported by the National Natural Science Foundation of China(No.52374344).
文摘The Ni-ZnFe_(2)O_(4)(NixZn_(1-x)Fe_(2)O_(4),x=0.4-0.7)spinel was synthesized using Zn2+extracted from electric arc furnace dust(EAFD),nickel chloride hexahydrate,and Fe^(3+)extracted from iron scale as raw materials.The zinc was selectively extracted from EAFD using CaO roasting followed by NH_(4)Cl solution leaching.The ferric ion was leached from iron scale using HCl solution as acid lixiviant.The experimental results demonstrate a high level of efficiency in the extraction of zinc,with a rate of 97.5%,and the leaching rate of ferric ion is 96.89%.The composition of the leaching solution is primary zinc and iron with low calcium,which is beneficial to the preparation of spinel ferrite.The influence of Ni content(x)and calcination temperature on the synthesis and magnetic properties of NixZn_(1-x)Fe_(2)O_(4)compounds was investigated by X-ray diffraction,scanning electron microscopy,and vibrating sample magnetometry.The results revealed that both Ni content and calcination temperature significantly affect the synthesis and magnetic properties of spinel NixZn_(1-x)Fe_(2)O_(4).Under the conditions of Ni content set at x=0.6,calcination temperature of 1100℃,and a duration of 2 h,a spinel NixZn_(1-x)Fe_(2)O_(4)with high saturation magnetization(Ms=65.7 A m2 kg-1)and low coercivity(Hc=0.056 A m^(-1))was obtained.
文摘Ensuring high electrocatalytic performance simultaneously with low or even no precious-metal usage is still a big challenge for the development of electrocatalysts toward oxygen evolution reaction(OER)in anion exchange membrane water electrolysis.Here,homogeneous high entropy oxide(HEO)film is in-situ fabricated on nickel foam(NF)substrate via magnetron sputtering technology without annealing process in air,which is composed of many spinel-structured(FeCoNiCrMo)_(3)O_(4) grains with an average particle size of 2.5 nm.The resulting HEO film(abbreviated as(FeCoNiCr-Mo)_(3)O_(4))exhibits a superior OER performance with a low OER overpotential of 216 mV at 10 mA cm^(–2) and steadily operates at 100 mA cm^(–2) for 200 h with a decay of only 272μV h^(–1),which is far better than that of commercial IrO_(2) catalyst(290 mV,1090μV h^(–1)).Tetramethylammonium cation(TMA^(+))probe experiment,activation energy analysis and theoretical calculations unveil that the OER on(FeCoNiCrMo)_(3)O_(4) follows an adsorbate evolution mechanism pathway,where the energy barrier of rate-determining step for OER on(FeCoNiCrMo)_(3)O_(4) is substantially lowered.Also,methanol molecular probe experiment suggests that a weakened ^(*)OH bonding on the(FeCoNiCrMo)_(3)O_(4) surface and a rapid deprotonation of ^(*)OH,further enhancing its OER performance.This work provides a feasible solution for designing efficient high entropy oxides electrocatalysts for OER,accelerating the practical process of water electrolysis for H2 production.
文摘In order to prepare high density magnesium aluminate spinel materials,the light-burned magnesia and alumina powder were used as the main raw materials.Active magnesium aluminate spinel powders were synthesized at different temperatures,and the sintering properties of the synthesized materials were characterized.The results show that the optimal light-burned temperature for synthesizing active magnesium aluminate spinel raw materials with small grain sizes and high sintering activity is 1400℃.The active spinel raw materials were sintered at 1750℃ for 3 h to form a dense spinel material,in which the spinel grains were well developed,exhibited a dense interlocking structure,and were uniformly distributed,with an average grain size of about 7.26μm.The bulk density and apparent porosity of the dense spinel material were 3.29 g·cm^(-3) and 3.5%,respectively.
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the small Groups Project under grant number(R.G.P.1/153/43)。
文摘Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.
基金supported by the National Programs for NanoKey Project(No.2022YFA1504002)the National Natural Science Foundation of China(Nos.22121005,22020102002,and 21835004)the Fundamental Research Funds for the Central Universities,and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)。
文摘Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to the structure designments while methods are often energy-intensive and inefficient.Here,we devised a universal strategy to achieve rapid synthesis of nanocrystalline spinel materials with multiple components(Co_(3)O_(4),Mn_(3)O_(4),CoMn_(2)O_(4)and CoFe_(2)O_(4)are as examples),where phase formation is within 15 s.Under the Joule-heating shock,a crack-break process of microcosmic phase transformation is observed by in-situ transmission electron microscopy.The half-wave potential values of Co_(3)O_(4)-JH,Mn_(3)O_(4)-JH,CoMn_(2)O_(4)-JH and CoFe_(2)O_(4)-JH in the electrocatalytic oxygen reduction reaction were 0.77,0.78,0.79 and 0.76,respectively.This suggests that the Joule heating is a fast and efficient method for the preparation of spinel oxide electrocatalysts.
基金the National Natural Science Foundation of China(U21A20286,22206054 and 21805069)Natural Science Foundation of Hubei(2021CFB094)the Fundamental Research Funds for the Central China Normal University(CCNU)for financial support。
文摘Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.
基金the financial support by the National Natural Science Foundation of China(NSFC,grant nos.21905288 and 51904288)Zhejiang Provincial Natural Science Foundation(LZ21B030001)+3 种基金K.C.Wong Education Foundation(GJTD-2019-13)Ningbo major special projects of the Plan“Science and Technology Innovation 2025”(grant nos.2018B10056 and 2019B10046)Ningbo 3315 ProgramYongjiang Talent Introduction Program(no.2021A-115-G)
文摘Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the large group research project under grant number (RGP2/82/44)。
文摘Spinel ferrites exhibit exceptional magnetic properties,making them a distinctive class of magnetic materials.The sol-gel technique was utilized for the synthesis of spinel ferrites with the chemical formula Co_(0.6)Sr_(0.4)Ce_(x)Fe_(2-x)O_(4). Following that,a comprehensive X-ray diffraction analysis unveiled the crystalline cubic structure of the synthesized materials.Through the utilization of the M-H loop approach,the ferromagnetic attributes of ferrites were assessed,and the assimilation of rare earth elements led to substantial enhancements in saturation magnetization,remanence,and coercivity.Spinel ferrites with a high concentration of rare earth elements have improved direct current resistivity and activation energy.The logarithm of a material's resistance increased from 5.29 to 8.12 Ω·cm as cerium is added.With a change in the amount of cerium,the activation energy goes up from 0.19 to 0.29.By changing the frequency from 5.5 to 9.5 GHz,the dielectric characteristics were determined.As the frequency goes up,the dielectric constant goes down.Spinel ferrites that have been made better in every way can be used in high-frequency applications.
文摘In the quest for the development of thermally stable,highly active and low-cost catalysts for use in catalyzed diesel particulate filter,nano-composites are new areas of research.Therefore,we reported the easy synthesis of spinel NiCo_(2)O_(4)/perovskite LaCoO_(3) nano-composite,and its individual oxides NiCo_(2)O_(4)and LaCoO_(3) for comparison.The detailed insights into the physio-chemical characteristics of formed NiCo_(2)O_(4)/LaCoO_(3) nano-composite were done based on various characterization analysis such as X-ray diffraction(XRD),Fourier transform infrared(FT-IR),N_(2) physiosorption,scanning electron microscopy-energy dispersive spectroscopy(SEM-EDX),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The characterization analysis of NiCo_(2)O_(4)/LaCoO_(3) revealed the successful formation of a chemical interface possessing strong interfacial interaction,resulting in desirable physicochemical characteristics such as small crystallite size,abundant mesoporosity,high specific surface area and activation of surface lattice oxygen.Owing to the desirable characteristics,the activity results over NiCo_(2)O_(4)/LaCoO_(3) nano-composite showed the excellent CO oxidation performance and high soot oxidation activity,recyclability and thermal stability.This work mainly attempts to emphasize the effectiveness of the facile,inexpensive and conventionally used precipitation method for the successful formation of highly efficient nano-composites.