A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazi...A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.展开更多
Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2&...Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.展开更多
This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. ...This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.展开更多
Surface spin waves in a semi-infinite magnetre super lattice with a single-ion uniaxial anisotropy are investigated through the transfer mafrix method.The dispersion equations of surface spin wavs are obfained.We find...Surface spin waves in a semi-infinite magnetre super lattice with a single-ion uniaxial anisotropy are investigated through the transfer mafrix method.The dispersion equations of surface spin wavs are obfained.We find that not all the magnetic superlattice structures can excite the surface spin waves,and that the anisotropy term need not be favorable to the excitation of surface spin wavs,but surely influences the values of the energy of the excited surface spin waves.展开更多
A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system...A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.展开更多
Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain proble...Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.展开更多
As a successively and locally plastic deformation process,ball backward spinnin g is applied for the purpose of producing thin-walled tubular parts with longit udinal inner ribs. By simplifying ball backward spinning ...As a successively and locally plastic deformation process,ball backward spinnin g is applied for the purpose of producing thin-walled tubular parts with longit udinal inner ribs. By simplifying ball backward spinning as forward extrusion me chanics model,slab method is used in order to solve spinning force. Based on pl astic mechanics,the influence of the process parameters involved on formability of inner ribs as well as the quality defects of spun parts is analyzed so as to present an approach to acquire the desired parts. The quality of inner ribs is one of the critical tasks in obtaining the desired spun workpieces and the heigh t of inner rib depends greatly on spinning material,ball diameter,feed ratio,and wall thickness of tubular blank. The knowledge of the influence of process v ariables such as ball diameter,feed ratio,and wall thickness of tubular blank on the spinning process is essential to prevent the quality defects of the spun parts and obtain the desired spun parts.展开更多
In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor film...In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.展开更多
Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides ...Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.展开更多
Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micr...Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micrography analysis reveals that severe plastic deformation leads to grain refinement, grain orientation and grain flow line of the spun part. Based on rigid-plastic finite element method, DEFORME3D finite element code was used to simulate and analyze multi-pass backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Finite element simulation results involve the distributions of the strain, the shape variation of the inner ribs as well as the prediction of the spinning loading.展开更多
Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order...Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies sh...The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate.展开更多
The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning p...The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30-170 μm in thickness, 4-8 mm in width, and 0.5-1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161-274 μm, depending on the process parameters.Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle-wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×10^5 and 1.26×10^4 K/s for the ribbon with thickness of 30 μm and for the powder with size of 87 μm, respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51579057,5177090655,and 51379052)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,China(Grant No.2016DX07)
文摘A new hybrid organic-inorganic structure of FTO/TiO2/Se/HTL/Au based selenium solar cell has been fabricated through a low-cost spin-coating process in air. In this process, selenium is completely dissolved in hydrazine, to fk)rm a homogeneous precursor solution. After spin-coating the precursor solution on the TiO2 substrates, following by sintering at 200 ℃ for 5rain, a uniform selenium film with crystalline grains is formed. The selenium based solar cell exhibits an efficiency of 1.23% under AM1.5 illumination (100 mW.cm-2), short-circuit current density of 8 mA.cm 2, open-circuit voltage of 0.55 V, and fill factor of 0.37. Moreover, the device shows a stable ability with almost the same performance alter 60 days.
文摘Transparent zinc oxide(ZnO) thin films are fabricated by a simple sol-gel spin-coating technique on glass substrates with different solution concentrations(0.3-1.2 M) using zinc acetate dehydrate [Zn(CH_3COO)_2·2H_2O] as precursor and isopropanol and monoethanolamine(MEA) as solvent and stabilizer, respectively. The molar ratio of zinc acetate dehydrate to MEA is 1.0. X-ray diffraction, ultraviolet-visible spectroscopy and photoluminescence spectroscopy are employed to investigate the effect of solution concentration on the structural and optical properties of the ZnO thin films. The obtained results of all thin films are discussed in detail and are compared with other experimental data.
文摘This paper introduces a new method for a formula for electron spin relaxation time of a system of electrons interacting with phonons through phonon-modulated spin-orbit coupling using the projection-reduction method. The phonon absorption and emission processes as well as the photon absorption and emission processes in all electron transition processes can be explained in an organized manner, and the result can be represented in a diagram that can provide intuition for the quantum dynamics of electrons in a solid. The temperature (T) dependence of electron spin relaxation times (T1) in silicon is T1 ∝ T-1.07 at low temperatures and T1 ∝ T-3.3 at high temperatures for acoustic deformation constant Pad = 1.4 × 10^7 eV and optical deformation constant Pod = 4.0 × 10^17 eV/m. This means that electrons are scattered by the acoustic deformation phonons at low temperatures and optical deformation phonons at high temperatures, respectively. The magnetic field (B) dependence of the relaxation times is T1 ∝ B-2.7 at 100 K and T1 ∝ B-2.3 at 150 K, which nearly agree with the result of Yafet, T1 ∝ B-3.0- B -2.5.
文摘Surface spin waves in a semi-infinite magnetre super lattice with a single-ion uniaxial anisotropy are investigated through the transfer mafrix method.The dispersion equations of surface spin wavs are obfained.We find that not all the magnetic superlattice structures can excite the surface spin waves,and that the anisotropy term need not be favorable to the excitation of surface spin wavs,but surely influences the values of the energy of the excited surface spin waves.
文摘A model of electronic intersupplemental states was presented for calculating the d orbital energies of a distorted octahedral low spin ( S =1/2) n d 5(t 5 2, 2T 2)(n=3, 4, 5) multielectron system, and the 6 dimensional eigenmatrices of two new types in real and complex orbital representations were derived from this electron model forth. In comparison with real and complex orbital methods offered by the hole model, the real and complex orbital methods reported in this paper not only could give directly all the electronic structure parameters for the n d 5(t 5 2, 2T 2) multielectron system, but also showed many other new advantages such as standardization in theory, systematization in method, agreement in calculation and so on.
基金supported by Overseas Returnee Foundation of Heilongjiang Province, China (lc01c13).
文摘Ball spinning is applied to manufacturing thin-walled tube with high precision and high mechanical properties. On the basis of plastic mechanics, by simplifying ball spinning of thin-walled tube as plane strain problem, slab method is used for the purpose of calculating the contact deformation pressure. The spinning force components, the torsional moment, the deformation power and the deformation work are calculated further as well. The influence of the two important process parameters such as the feed ratio and the ball diameter on the spinning force components is analyzed in order to further control the spinning force components by regulating the two process variables during the ball spinning process. The stress and strain state in deformable zone as well as mechanics boundary conditions in ball spinning are obtained. The effect of the three spinning force components on the formability of the spun part is analyzed and validated through the ball spinning experiments. The theoretical and experimental results show that the radial spinning component plays a significant role in ball spinning of thin-walled tube, and the mechanics situation in backward ball spinning contributes to enhancing the plasticity of the metal material, but that in forward ball spinning contributes to advancing the axial flow of the metal material.
文摘As a successively and locally plastic deformation process,ball backward spinnin g is applied for the purpose of producing thin-walled tubular parts with longit udinal inner ribs. By simplifying ball backward spinning as forward extrusion me chanics model,slab method is used in order to solve spinning force. Based on pl astic mechanics,the influence of the process parameters involved on formability of inner ribs as well as the quality defects of spun parts is analyzed so as to present an approach to acquire the desired parts. The quality of inner ribs is one of the critical tasks in obtaining the desired spun workpieces and the heigh t of inner rib depends greatly on spinning material,ball diameter,feed ratio,and wall thickness of tubular blank. The knowledge of the influence of process v ariables such as ball diameter,feed ratio,and wall thickness of tubular blank on the spinning process is essential to prevent the quality defects of the spun parts and obtain the desired spun parts.
基金financially supported by the National Natural Science Foundation of China (Nos. 51421002, 51627803, 91733301, 51761145042, 21501183, 51402348, 53872321, and 11874402)the Knowledge Innovation Program and the Strategic Priority Research Program (Grant XDB 12010400) of the Chinese Academy of Sciences
文摘In CZTSSe solar cells,a simple sodium-incorporation post-treatment method toward solution-processed Cu2Zn Sn S4precursor films is presented in this work.An ultrathin NaCl film is deposited on Cu2Zn Sn S4precursor films by spin-coating NaCl solution.In subsequent selenization process,the introduction of Na Cl is found to be benefacial for the formation of Cu2-xSe,which can further facilitate the element transportation,leading to dense and smooth CZTSSe films with large grains and less impurity Cu2Sn(S,Se)3phase.SIMS depth profiles confirm the gradient distribution of the sodium element in Na-doped absorbers.Photoluminescence spectra show that the introduction of appropriate sodium into the absorber can inhibit the band tail states.As high as 11.18% of power conversion efficiency(PCE)is achieved for the device treated with 5 mg mL^-1 NaCl solution,and an average efficiency of Na-doped devices is 10.71%,13%higher than that of the control groups(9.45%).Besides,the depletion width and the charge recombination lifetime can also have regular variation with sodium treatment.This work offers an easy modification method for high-quality Na-doped CZTSSe films and high-performance devices,in the meantime,it can also help to further understand the effects of sodium in CZTSSe solar cells.
基金supported in part by the Guangdong Basic and Applied Basic Research Foundation(No.2019A1515012216)the National Natural Science Foundation of China(No.11505301)the Innovation Training Program for bachelor students at the School of Physics in SYSU
文摘Scintillation light from a liquid noble gas during a neutrino or dark matter experiment lies typically within the vacuum ultraviolet region and might be strongly absorbed by surrounding materials such as light guides or photomultipliers.Tetraphenyl butadiene(TPB)is a fluorescent material,acts as a wavelength shifter,and can turn UV light into visible light at a peak wavelength of approximately 425 nm,enabling the light signals to be easily detected during physics studies.Compared with a traditional TPB coating method using vapor deposition,we propose an alternative technique applying a spin-coating procedure to facilitate the development of neutrino and dark matter detectors.This article introduces a method to fabricate a TPB film on an acrylic substrate by using a spincoating method,reports the measurements of the sample film thickness and roughness,demonstrates the reemission spectrum,and quantifies the wavelength shifting efficiency.
基金Project(3236301154) supported by Postdoctoral Foundation of Heilongjiang Province, China
文摘Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micrography analysis reveals that severe plastic deformation leads to grain refinement, grain orientation and grain flow line of the spun part. Based on rigid-plastic finite element method, DEFORME3D finite element code was used to simulate and analyze multi-pass backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Finite element simulation results involve the distributions of the strain, the shape variation of the inner ribs as well as the prediction of the spinning loading.
文摘Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘The microstructure and electrochemical characteristics of Ml(NiCoMnAl) 5 alloys prepared by both the melt spinning method and the conventional induction melting were investigated and compared. SEM and XRD studies show that the microstructure of melt spinning alloys is columnar structure. With increasing melt spinning rate, the crystal grains become finer and preferentially grow along (111)[111] direction. The melt spinning and cast alloys belong to CaCu 5 type hexagonal crystal structure. The electrochemical measurements show that the initial capacities of melt spinning alloy electrodes are all above 210 mAh·g -1 with good activation behavior, reaching their maximum capacities after two charge discharge cycles. The maximum capacity (294 mAh·g -1 ) of melt spinning (10 m·s -1 ) alloy electrodes is as the same as that of as cast alloy electrode, and stability of charge discharge cycles of all melt spinning alloy electrodes is better than that of the as cast alloy electrodes. When charged at 600 mA·g -1 , the capacity of melt spinning (10 m·s -1 ) alloy electrode could reach 65% of its maximum capacity about 45 min with high rate discharge capability; but with the cycle number increasing, the stability of its capacity is less than that electrodes of melt spinning rate.
文摘The aim of this study is to investigate the surface quality of the melt spinning wheel, which was changed from smooth type to textured structure, to atomize liquid metal to form powders. The effects of melt spinning process parameters like wheel speed, gas ejection pressure, molten metal temperature, nozzle–wheel gap and wheel surface quality on the morphological and microstructural features of 6060 aluminum alloy powders and ribbons were investigated. It was observed that ribbon type material was obtained with the smooth wheel and the powder was produced with textured type. The sizes of produced ribbons with smooth surface wheel varied in the range of 30-170 μm in thickness, 4-8 mm in width, and 0.5-1 m in length. The average powder size of the powders manufactured using the textured wheel was in the range of 161-274 μm, depending on the process parameters.Increasing the wheel speed, melt temperature and decreasing gas ejection pressure, nozzle-wheel gap resulted in the decrease of both ribbon thickness and powder size. The microstructures of the powders and ribbons were the equiaxed cellular type, and the average grain sizes diminished with decreasing the ribbon thickness and powder size. The maximum cooling rates were 2.00×10^5 and 1.26×10^4 K/s for the ribbon with thickness of 30 μm and for the powder with size of 87 μm, respectively.