期刊文献+
共找到460篇文章
< 1 2 23 >
每页显示 20 50 100
Spiking Reinforcement Learning Enhanced by Bioinspired Event Source of Multi-dendrite Spiking Neuron and Dynamic Thresholds
1
作者 Xingyue Liang Qiaoyun Wu +3 位作者 Yun Zhou Chunyu Tan Hongfu Yin Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期618-629,共12页
Deep reinforcement learning(DRL)achieves success through the representational capabilities of deep neural networks(DNNs).Compared to DNNs,spiking neural networks(SNNs),known for their binary spike information processi... Deep reinforcement learning(DRL)achieves success through the representational capabilities of deep neural networks(DNNs).Compared to DNNs,spiking neural networks(SNNs),known for their binary spike information processing,exhibit more biological characteristics.However,the challenge of using SNNs to simulate more biologically characteristic neuronal dynamics to optimize decision-making tasks remains,directly related to the information integration and transmission in SNNs.Inspired by the advanced computational power of dendrites in biological neurons,we propose a multi-dendrite spiking neuron(MDSN)model based on Multi-compartment spiking neurons(MCN),expanding dendrite types from two to multiple and deriving the analytical solution of somatic membrane potential.We apply the MDSN to deep distributional reinforcement learning to enhance its performance in executing complex decisionmaking tasks.The proposed model can effectively and adaptively integrate and transmit meaningful information from different sources.Our model uses a bioinspired event-enhanced dendrite structure to emphasize features.Meanwhile,by utilizing dynamic membrane potential thresholds,it adaptively maintains the homeostasis of MDSN.Extensive experiments on Atari games show that the proposed model outperforms some state-of-the-art spiking distributional RL models by a significant margin. 展开更多
关键词 Deep reinforcement learning multi-compartment spiking neurons spiking neural network
在线阅读 下载PDF
Electropolymerized dopamine-based memristors using threshold switching behaviors for artificial current-activated spiking neurons 被引量:1
2
作者 Bowen Zhong Xiaokun Qin +4 位作者 Zhexin Li Yiqiang Zheng Lingchen Liu Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第2期98-103,共6页
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us... Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems. 展开更多
关键词 ELECTROPOLYMERIZATION POLYDOPAMINE MEMRISTOR threshold switching spiking voltage artificial neuron
在线阅读 下载PDF
Behavior of Spikes in Spiking Neural Network (SNN)Model with Bernoulli for Plant Disease on Leaves
3
作者 Urfa Gul M.Junaid Gul +1 位作者 Gyu Sang Choi Chang-Hyeon Park 《Computers, Materials & Continua》 2025年第8期3811-3834,共24页
Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neur... Spiking Neural Network(SNN)inspired by the biological triggering mechanism of neurons to provide a novel solution for plant disease detection,offering enhanced performance and efficiency in contrast to Artificial Neural Networks(ANN).Unlike conventional ANNs,which process static images without fully capturing the inherent temporal dynamics,our approach represents the first implementation of SNNs tailored explicitly for agricultural disease classification,integrating an encoding method to convert static RGB plant images into temporally encoded spike trains.Additionally,while Bernoulli trials and standard deep learning architectures likeConvolutionalNeuralNetworks(CNNs)and Fully Connected Neural Networks(FCNNs)have been used extensively,our work is the first to integrate these trials within an SNN framework specifically for agricultural applications.This integration not only refines spike regulation and reduces computational overhead by 30%but also delivers superior accuracy(93.4%)in plant disease classification,marking a significant advancement in precision agriculture that has not been previously explored.Our approach uniquely transforms static plant leaf images into time-dependent representations,leveraging SNNs’intrinsic temporal processing capabilities.This approach aligns with the inherent ability of SNNs to capture dynamic,timedependent patterns,making them more suitable for detecting disease activations in plants than conventional ANNs that treat inputs as static entities.Unlike prior works,our hybrid encoding scheme dynamically adapts to pixel intensity variations(via threshold),enabling robust feature extraction under diverse agricultural conditions.The dual-stage preprocessing customizes the SNN’s behavior in two ways:the encoding threshold is derived from pixel distributions in diseased regions,and Bernoulli trials selectively reduce redundant spikes to ensure energy efficiency on low-power devices.We used a comprehensive dataset of 87,000 RGB images of plant leaves,which included 38 distinct classes of healthy and unhealthy leaves.To train and evaluate three distinct neural network architectures,DeepSNN,SimpleCNN,and SimpleFCNN,the dataset was rigorously preprocessed,including stochastic rotation,horizontal flip,resizing,and normalization.Moreover,by integrating Bernoulli trials to regulate spike generation,ourmethod focuses on extracting themost relevant featureswhile reducingcomputational overhead.Using a comprehensivedatasetof87,000RGB images across 38 classes,we rigorously preprocessed the data and evaluated three architectures:DeepSNN,SimpleCNN,and SimpleFCNN.The results demonstrate that DeepSNN outperforms the other models,achieving superior accuracy,efficient feature extraction,and robust spike management,thereby establishing the potential of SNNs for real-time,energy-efficient agricultural applications. 展开更多
关键词 AGRICULTURE image processing machine learning neural network optimization plant disease detection spiking neural networks(SNNs)
在线阅读 下载PDF
Spiking Neural Networks:A Comprehensive Survey of Training Methodologies,Hardware Implementations and Applications
4
作者 Ameer Hamza KHAN Xinwei CAO +4 位作者 Chunbo LUO Shiqing ZHANG Wenping GUO Vasilios NKATSIKIS Shuai LI 《Artificial Intelligence Science and Engineering》 2025年第3期175-207,共33页
Spiking neural networks(SNN)represent a paradigm shift toward discrete,event-driven neural computation that mirrors biological brain mechanisms.This survey systematically examines current SNN research,focusing on trai... Spiking neural networks(SNN)represent a paradigm shift toward discrete,event-driven neural computation that mirrors biological brain mechanisms.This survey systematically examines current SNN research,focusing on training methodologies,hardware implementations,and practical applications.We analyze four major training paradigms:ANN-to-SNN conversion,direct gradient-based training,spike-timing-dependent plasticity(STDP),and hybrid approaches.Our review encompasses major specialized hardware platforms:Intel Loihi,IBM TrueNorth,SpiNNaker,and BrainScaleS,analyzing their capabilities and constraints.We survey applications spanning computer vision,robotics,edge computing,and brain-computer interfaces,identifying where SNN provide compelling advantages.Our comparative analysis reveals SNN offer significant energy efficiency improvements(1000-10000×reduction)and natural temporal processing,while facing challenges in scalability and training complexity.We identify critical research directions including improved gradient estimation,standardized benchmarking protocols,and hardware-software co-design approaches.This survey provides researchers and practitioners with a comprehensive understanding of current SNN capabilities,limitations,and future prospects. 展开更多
关键词 spiking neural networks brain-inspired computing specialized hardware energy-efficient AI event-driven computation
在线阅读 下载PDF
Evolution of spiking neural networks
5
作者 TALANOV Max FEDOROVA Alina +2 位作者 KIPELKIN Ivan VALLVERDU Jordi EROKHIN Victor 《宁波大学学报(理工版)》 2025年第2期59-70,共12页
Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and... Spiking neural networks(SNNs)represent a biologically-inspired computational framework that bridges neuroscience and artificial intelligence,offering unique advantages in temporal data processing,energy efficiency,and real-time decision-making.This paper explores the evolution of SNN technologies,emphasizing their integration with advanced learning mechanisms such as spike-timing-dependent plasticity(STDP)and hybridization with deep learning architectures.Leveraging memristors as nanoscale synaptic devices,we demonstrate significant enhancements in energy efficiency,adaptability,and scalability,addressing key challenges in neuromorphic computing.Through phase portraits and nonlinear dynamics analysis,we validate the system’s stability and robustness under diverse workloads.These advancements position SNNs as a transformative technology for applications in robotics,IoT,and adaptive low-power AI systems,paving the way for future innovations in neuromorphic hardware and hybrid learning paradigms. 展开更多
关键词 spiking neural networks MEMRISTOR phase portraits energy-efficient AI neuromorphic computing
在线阅读 下载PDF
A Review of Computing with Spiking Neural Networks 被引量:1
6
作者 Jiadong Wu Yinan Wang +2 位作者 Zhiwei Li Lun Lu Qingjiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第3期2909-2939,共31页
Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,exces... Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing. 展开更多
关键词 spiking neural networks neural networks brain-like computing artificial intelligence learning algorithm
在线阅读 下载PDF
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
7
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 Network fault diagnosis edge networks Izhikevich neurons PRUNING dynamic spike timing dependent plasticity learning
在线阅读 下载PDF
基于Spiking神经网络的光伏系统发电功率预测 被引量:10
8
作者 陈通 孙国强 +3 位作者 卫志农 李慧杰 CHEUNG KWOK W 孙永辉 《电力系统及其自动化学报》 CSCD 北大核心 2017年第6期7-12,44,共7页
为了提高光伏系统发电功率预测的精度,本文提出一种基于Spiking神经网络(SNN)的预测模型。该神经网络采用精确脉冲时间的编码方式,更接近真实的生物神经系统,具有强大的计算能力。考虑季节类型、天气类型和大气温度等主要影响因素,该模... 为了提高光伏系统发电功率预测的精度,本文提出一种基于Spiking神经网络(SNN)的预测模型。该神经网络采用精确脉冲时间的编码方式,更接近真实的生物神经系统,具有强大的计算能力。考虑季节类型、天气类型和大气温度等主要影响因素,该模型采用灰色关联分析法选取相似日。本文应用实际光伏发电系统的数据分别对基于SNN、BP人工神经网络(BP-ANN)和支持向量机(SVM)的预测模型进行测试和评估。预测结果表明:SNN预测模型相比于BP-ANN和SVM模型有较高的预测精度和较强的适用性,可以为光伏系统发电功率预测提供一种可行方法。 展开更多
关键词 光伏系统 spiking神经网络 SpikeProp算法 相似日选择算法 发电功率预测
在线阅读 下载PDF
基于Spiking神经网络的机械臂故障诊断(英文) 被引量:7
9
作者 王秀青 曾慧 +1 位作者 解飞 吕峰 《山东大学学报(工学版)》 CAS 北大核心 2017年第5期15-21,共7页
因为Spiking神经网络(Spiking neural networks,SNNs)能同时传递时空信息,SNNs包含优于传统神经网络的许多特性,因而更适用于动态时序信号的分析。碰撞和受阻是机械臂在靠近抓取位置时常见的两种故障。为区别此两种故障状态与正常工作状... 因为Spiking神经网络(Spiking neural networks,SNNs)能同时传递时空信息,SNNs包含优于传统神经网络的许多特性,因而更适用于动态时序信号的分析。碰撞和受阻是机械臂在靠近抓取位置时常见的两种故障。为区别此两种故障状态与正常工作状态,提出一种基于SNNs的新型机械臂故障诊断方法。讨论所提出的SNNs故障诊断方法的体系结构,比较了当SNNs故障诊断方法选用不同Spiking神经网络拓扑结构和不同参数时的诊断结果。试验结果表明所提出的基于Spiking神经网络的机械臂故障诊断方法是有效的。该方法有助于机械臂故障的正确诊断,并且对平稳安全的生产具有重要意义。 展开更多
关键词 故障诊断 spiking神经网络 机械臂 STDP学习 时序信号
原文传递
基于蜂群优化的Spiking神经网络模型研究与评估 被引量:2
10
作者 马韦伟 郑勤红 刘珊珊 《计算机科学》 CSCD 北大核心 2023年第8期221-225,共5页
为提高Spiking神经网络的训练能力,以多标签分类问题作为研究切入点,采用蜂群算法进行模型优化。基于Spiking理念的神经网络模型有多种,文中选择概率Spiking神经网络(Probabilistic Spiking Neural Network,PSNN)进行多标签分类。首先,... 为提高Spiking神经网络的训练能力,以多标签分类问题作为研究切入点,采用蜂群算法进行模型优化。基于Spiking理念的神经网络模型有多种,文中选择概率Spiking神经网络(Probabilistic Spiking Neural Network,PSNN)进行多标签分类。首先,建立概率Spiking神经网络分类模型,通过点火时间序列进行编码,触发脉冲响应实现数据传递;然后,利用Spiking神经网络的权重、动态阈值、遗忘参数等构建蜂群,并以多标签分类准确率作为人工蜂群(Artificial Bee Colony,ABC)算法的适应度函数,从而通过不断更新蜂群个体适应度值来获得最优个体;最后,以最优参数完成概率Spiking神经网络的多标签分类。实验结果表明,通过合理设置蜂群个体规模及蜜源搜索范围,ABC-PSNN算法能够获得较高的多标签分类准确率。相比其他Spiking神经网络模型和常用多标签分类算法,ABC-PSNN算法具备更高的分类准确率和稳定性。 展开更多
关键词 spiking神经网络 概率spiking神经网络 蜂群算法 多标签分类 脉冲响应
在线阅读 下载PDF
多脉冲发放的Spiking神经网络 被引量:3
11
作者 方慧娟 王永骥 《应用科学学报》 CAS CSCD 北大核心 2008年第6期638-644,共7页
针对允许神经元发放多个脉冲的Spiking神经网络(SNN)的学习,提出采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP学习算法调整神经元的不应期.通过对XOR问题、IRIS数据集以及泊松脉冲序列的测试,... 针对允许神经元发放多个脉冲的Spiking神经网络(SNN)的学习,提出采用更接近生物神经元的SRM模型,更全面地考虑了神经元在发放脉冲后的状态变化,并采用BP学习算法调整神经元的不应期.通过对XOR问题、IRIS数据集以及泊松脉冲序列的测试,表明这种多脉冲发放的SNN比单脉冲发放的SNN能够更有效地传递信息,提高学习速度. 展开更多
关键词 spiking神经网络 多脉冲 SRM模型 不应期
在线阅读 下载PDF
Photonic integrated neuro-synaptic core for convolutional spiking neural network 被引量:9
12
作者 Shuiying Xiang Yuechun Shi +14 位作者 Yahui Zhang Xingxing Guo Ling Zheng Yanan Han Yuna Zhang Ziwei Song Dianzhuang Zheng Tao Zhang Hailing Wang Xiaojun Zhu Xiangfei Chen Min Qiu Yichen Shen Wanhua Zheng Yue Hao 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第11期29-42,共14页
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions... Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip. 展开更多
关键词 neuromorphic computation photonic spiking neuron photonic integrated DFB-SA array convolutional spiking neural network
在线阅读 下载PDF
扰动信号强度对VCSEL光子神经Spiking动力学特性的影响
13
作者 谭志存 邓涛 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第11期157-163,共7页
理论研究了外部光注入下1 300nm-VCSEL光子神经的spiking动力学特性.VCSEL在足够强的连续光注入下工作在稳定的注入锁定态;在注入光中引入扰动信号后,当扰动信号强度较小时,VCSEL不能激发spike信号;一旦扰动信号强度达到一定水平,VCSEL... 理论研究了外部光注入下1 300nm-VCSEL光子神经的spiking动力学特性.VCSEL在足够强的连续光注入下工作在稳定的注入锁定态;在注入光中引入扰动信号后,当扰动信号强度较小时,VCSEL不能激发spike信号;一旦扰动信号强度达到一定水平,VCSEL将激发出稳定的、可重复的spike信号,且spike信号的幅值和形状几乎不随扰动信号强度的变化而变化,但其响应速率却随扰动信号强度的增加而增大.VCSEL光子神经的这种阈值响应特性与生物神经的全或无响应特性类似,但其响应速率却比生物神经快约8个量级. 展开更多
关键词 1 300nm-VCSEL 光注入 光子神经 spiking动力学
原文传递
Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
14
作者 Wenwu Jiang Jie Li +4 位作者 Hongbo Liu Xicong Qian Yuan Ge Lidan Wang Shukai Duan 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期225-233,共9页
Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,... Spiking neural networks(SNNs) are widely used in many fields because they work closer to biological neurons.However,due to its computational complexity,many SNNs implementations are limited to computer programs.First,this paper proposes a multi-synaptic circuit(MSC) based on memristor,which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals.The synapse circuit participates in the calculation of the network while transmitting the pulse signal,and completes the complex calculations on the software with hardware.Secondly,a new spiking neuron circuit based on the leaky integrate-and-fire(LIF) model is designed in this paper.The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required.The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron(MSSN).The MSSN was simulated in PSPICE and the expected result was obtained,which verified the feasibility of the circuit.Finally,a small SNN was designed based on the mathematical model of MSSN.After the SNN is trained and optimized,it obtains a good accuracy in the classification of the IRIS-dataset,which verifies the practicability of the design in the network. 展开更多
关键词 MEMRISTOR multi-synaptic circuit spiking neuron spiking neural network(SNN)
原文传递
基于粒子群算法优化Spiking神经网络 被引量:1
15
作者 沈虹 蔚承建 苏俊霞 《计算机应用》 CSCD 北大核心 2005年第B12期305-307,共3页
Spiking神经网络采用神经元的发放时间点进行信息编码,更接近于生物神经元。学习算法的选取对发挥Spiking神经网络的性能有很大的影响。基于BP算法的SpikeProp采用多突触连接的网络结构,利用梯度信息进行网络参数的调整,易于陷入局部最... Spiking神经网络采用神经元的发放时间点进行信息编码,更接近于生物神经元。学习算法的选取对发挥Spiking神经网络的性能有很大的影响。基于BP算法的SpikeProp采用多突触连接的网络结构,利用梯度信息进行网络参数的调整,易于陷入局部最优解;且连接权值的选取只能为正值,否则将不收敛。采用粒子群算法(Particle Swarm Optim ization,PSO)进行Spiking网络连接参数的调整,全局收敛性好,减少了对连接权值的约束,简化了网络结构。实验表明,该方法是一种有效的Spiking网络学习方法。 展开更多
关键词 spiking神经网络 粒子群算法 XOR问题 IRIS问题
在线阅读 下载PDF
基于Spiking神经网络的光伏发电系统功率预测 被引量:1
16
作者 卢怡含 王林 +2 位作者 晋飞 刘忠辉 唐敏 《黑龙江电力》 CAS 2016年第3期263-269,共7页
针对光伏发电系统输出功率的随机性,提出了一种基于Spiking神经网络的光伏发电功率预测模型,它采用精确脉冲时间的编码方式,能接近真实的生物神经系统,并具有强大的计算能力。考虑天气类型、太阳辐照强度、环境温度等主要影响因素,采用... 针对光伏发电系统输出功率的随机性,提出了一种基于Spiking神经网络的光伏发电功率预测模型,它采用精确脉冲时间的编码方式,能接近真实的生物神经系统,并具有强大的计算能力。考虑天气类型、太阳辐照强度、环境温度等主要影响因素,采用近似欧式距离选取相似日的方法,应用实际光伏发电系统的历史发电数据和气象数据对Spiking神经网络、BP神经网络和支持向量机三种预测模型进行测试和评估。预测结果与实测值的比较表明:Spiking神经网络模型相比于BP神经网络和支持向量机模型具有较高的预测精度和较强的适用性,可作为解决光伏发电系统功率预测可行方法之一。 展开更多
关键词 光伏系统 spiking神经网络 脉冲响应模型 Spikeprop算法 发电功率预测
在线阅读 下载PDF
基于菌群优化Spiking神经网络的渲染时间估计 被引量:1
17
作者 胡博 章毅 蔡柳萍 《南京理工大学学报》 CAS CSCD 北大核心 2023年第2期214-220,共7页
为了提高三维模型渲染时间估计的准确度,采用Spiking神经网络算法进行渲染时间预估。目前,基于Spiking理念的神经网络模型有多种,选择了其中的卷积Spiking神经网络(Convolutional Spike neural network,CSNN)来实现渲染时间计算。首先,... 为了提高三维模型渲染时间估计的准确度,采用Spiking神经网络算法进行渲染时间预估。目前,基于Spiking理念的神经网络模型有多种,选择了其中的卷积Spiking神经网络(Convolutional Spike neural network,CSNN)来实现渲染时间计算。首先,建立了基于CSNN的渲染时间预估模型。通过点火时间序列完成编码,从而触发脉冲响应实现数据传递。其次,利用CSNN的权重、卷积核尺寸、偏置等参数来构建菌群优化(Bacterial foraging optimization,BFO)算法,并以渲染时间预估值和实际值的差值作为适应度函数。通过驱化、繁衍和迁徙操作不断更新菌群个体的适应度值来获得最优个体。最后,以最优参数进行CSNN的渲染时间预估。试验结果表明,通过合理设置BFO算法的引力系数、斥力系数和迁徙概率阈值等参数,BFO+CSNN算法能够获得较高的渲染时间预估准确率。相比于其他渲染时间预估算法,BFO+CSNN算法具备更高的渲染时间预估准鲁棒性。 展开更多
关键词 spiking神经网络 渲染时间 菌群优化 卷积神经网络
在线阅读 下载PDF
基于Spiking的RBF神经网络故障诊断算法 被引量:2
18
作者 霍一峰 王亚慧 《北京建筑工程学院学报》 2011年第4期57-61,共5页
神经网络是一种不依赖模型的控制方法,其自身并不需要给定预先需要的有关先验知识和判断函数,因此能对变化的环境(包括扰动和噪声信号等等)具有良好的自适应性.RBF神经网络是具有单隐层的三层前馈网络,由输入到输出的映射是非线性的,而... 神经网络是一种不依赖模型的控制方法,其自身并不需要给定预先需要的有关先验知识和判断函数,因此能对变化的环境(包括扰动和噪声信号等等)具有良好的自适应性.RBF神经网络是具有单隐层的三层前馈网络,由输入到输出的映射是非线性的,而隐含层空间到输出空间的映射是线性的.其优点在于收敛速度快,具有唯一最佳逼近的特性,且不会陷入局部最小的问题.Spiking神经网络采用时间编码的方式来进行数据处理,更接近于实际生物神经系统.基于Spiking的RBF神经网络在预测精度和误差控制上有着显著的效果. 展开更多
关键词 RBF神经网络 spiking 故障诊断
在线阅读 下载PDF
DSNNs:learning transfer from deep neural networks to spiking neural networks 被引量:3
19
作者 Zhang Lei Du Zidong +1 位作者 Li Ling Chen Yunji 《High Technology Letters》 EI CAS 2020年第2期136-144,共9页
Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural netwo... Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets. 展开更多
关键词 DEEP leaning spiking NEURAL network(SNN) CONVERT METHOD spatially folded NETWORK
在线阅读 下载PDF
Fast Learning in Spiking Neural Networks by Learning Rate Adaptation 被引量:2
20
作者 方慧娟 罗继亮 王飞 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1219-1224,共6页
For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de... For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN. 展开更多
关键词 spiking neural networks learning algorithm learning rate adaptation Tennessee Eastman process
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部