期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TA15/TaZrNb multi-element alloy prepared via diffusion bonding:Tensile-strength model and performance of a representative volume element embedded with a sphere
1
作者 Wei Chen Fenglei Huang +4 位作者 Chuanting Wang Ruijun Fan Pengjie Zhang Lida Che Aiguo Pi 《Defence Technology(防务技术)》 2025年第8期36-51,共16页
In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere wa... In this study, to meet the development and application requirements for high-strength and hightoughness energetic structural materials, a representative volume element of a TA15 matrix embedded with a TaZrNb sphere was designed and fabricated via diffusion bonding. The mechanisms of the microstructural evolution of the TaZrNb/TA15 interface were investigated via SEM, EBSD, EDS, and XRD.Interface mechanical property tests and in-situ tensile tests were conducted on the sphere-containing structure, and an equivalent tensile-strength model was established for the structure. The results revealed that the TA15 titanium alloy and joint had high density and no pores or cracks. The thickness of the planar joint was approximately 50-60 μm. The average tensile and shear strengths were 767 MPa and 608 MPa, respectively. The thickness of the spherical joint was approximately 60 μm. The Zr and Nb elements in the joint diffused uniformly and formed strong bonds with Ti without forming intermetallic compounds. The interface exhibited submicron grain refinement and a concave-convex interlocking structure. The tensile fracture surface primarily exhibited intergranular fracture combined with some transgranular fracture, which constituted a quasi-brittle fracture mode. The shear fracture surface exhibited brittle fracture with regular arrangements of furrows. Internal fracture occurred along the spherical interface, as revealed by advanced in-situ X-ray microcomputed tomography. The experimental results agreed well with the theoretical predictions, indicating that the high-strength interface contributes to the overall strength and toughness of the sphere-containing structure. 展开更多
关键词 Diffusion bonding Multi-element alloy Joint microstructure In-situ mechanical test X-ray mCT sphere-containing structure
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部