The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a m...The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.展开更多
The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extrac...The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.展开更多
In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation ...In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.展开更多
Islands are valuable land resources in the ocean,and their detailed subsurface seismic velocity structures are highly important for underground space utilization,engineering construction,and geological disaster preven...Islands are valuable land resources in the ocean,and their detailed subsurface seismic velocity structures are highly important for underground space utilization,engineering construction,and geological disaster prevention.Ambient noise tomography and the horizontal–vertical spectral ratio(HVSR)method use ambient noise recordings instead of earthquake signals to study the underground velocity structure,making them easy to implement on islands and consequently becoming potential optimization schemes for the investigation of detailed island structures.However,the application of these technologies to small granite islands along coasts is relatively insufficient,and the applicability needs to be further verified.This study ambient noise tomography and HVSR analysis were carried out by using a dense array of seismic data on Wuzhizhou Island,Hainan.It was found that natural activities mainly cause the ambient noise below 8 Hz on Wuzhizhou Island.Moreover,high-quality noise cross-correlation functions of 3–8 Hz can be extracted.The results of ambient noise tomography and HVSR analysis show that the underground S-wave velocity structure and sedimentary characteristics of Wuzhizhou Island are coupled with its topography.The high-terrain area of Wuzhizhou Island exhibits low-velocity anomalies,where a sedimentary layer did not develop.On the other hand,the low-terrain area of Wuzhizhou Island exhibits high-velocity anomalies,where a thin Quaternary sedimentary layer developed.These results imply that subsurface magmatic activity controls the island topography and affects the distribution of the island sedimentary layer.This study successfully verifies the feasibility of detection methods based on ambient noise in small granite islands along the coast.It also provides key basic information for studying the geological evolutionary history,island spatial planning,and geological disaster prevention of Wuzhizhou Island.展开更多
The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by...The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.展开更多
Seismic attenuation has been inherent media characteristics in which an interesting topic of research, for it reflects the seismic waves propagate. There are many factors that cause seismic wave attenuation, such as g...Seismic attenuation has been inherent media characteristics in which an interesting topic of research, for it reflects the seismic waves propagate. There are many factors that cause seismic wave attenuation, such as geometry attenuation caused by energy dissipating during propagation, friction attenuation by relative sliding among rock grains, and scattering attenuation by rock heterogeneity. In this paper we study P-wave scattering attenuation in a random elastic medium by numerical simulations from a statistical point of view. A random elastic medium model is built based on general stochastic process theory. Then a staggered-grid pseudo-spectral method is used to simulate wave propagation. Scattering attenuation is estimated by the spectral ratio method based on virtual detector records. Random elastic media numerical scatter results with various heterogeneity levels show that the higher heterogeneous levels cause greater scattering attenuation. When the scatter sizes are smaller than a wave length, the larger scatters give a greater attenuation. Finally, we propose a method to evaluate fluid-flow attenuation in porous media. The fluid- flow attenuation is derived from total attenuation and scattering attenuation in random porous media and the attenuation is estimated quantitatively. Results show that in the real seismic frequency range when the heterogeneous scale is about 10^1 meters (less than one wave length), scattering attenuation is larger than fluid-tlow attenuation in random porous media and scattering attenuation is the main factor of seismic attenuation in real heterogeneous porous media.展开更多
基金supported by The National Key Research and Development Program Plane(No.2017YFC0601505)National Natural Science Foundation(No.41672325)Science&Technology Department of Sichuan Province Technology Project(No.2017GZ0393)
文摘The attenuation factor or quality factor(Q-factor or Q) has been used to measure the energy attenuation of seismic waves propagating in underground media. Many methods are used to estimate the Q-factor. We propose a method to calculate the Q-factor based on the prestack Q-factor inversion and the generalized S-transform. The proposed method specifies a standard primary wavelet and calculates the cumulative Q-factors; then, it finds the interlaminar Q-factors using the relation between Q and offset(QVO) and the Dix formula. The proposed method is alternative to methods that calculate interlaminar Q-factors after horizon picking. Because the frequency spectrum of each horizon can be extracted continuously on a 2D time–frequency spectrum, the method is called the continuous spectral ratio slope(CSRS) method. Compared with the other Q-inversion methods, the method offers nearly effortless computations and stability, and has mathematical and physical significance. We use numerical modeling to verify the feasibility of the method and apply it to real data from an oilfield in Ahdeb, Iraq. The results suggest that the resolution and spatial stability of the Q-profile are optimal and contain abundant interlaminar information that is extremely helpful in making lithology and fluid predictions.
基金supported by the Major Project of the Ministry of Science and Technology of China(No.2011ZX05024-001-01)National Nature Science Foundation of China(No.41140033)
文摘The quality factor Q, which reflects the energy attenuation of seismic waves in subsurface media, is a diagnostic tool for hydrocarbon detection and reservoir characterization. In this paper, we propose a new Q extraction method based on the energy ratio before and after the wavelet attenuation, named the energy-ratio method(ERM). The proposed method uses multipoint signal data in the time domain to estimate the wavelet energy without invoking the source wavelet spectrum, which is necessary in conventional Q extraction methods, and is applicable to any source wavelet spectrum; however, it requires high-precision seismic data. Forward zero-offset VSP modeling suggests that the ERM can be used for reliable Q inversion after nonintrinsic attenuation(geometric dispersion, refl ection, and transmission loss) compensation. The application to real zero-offset VSP data shows that the Q values extracted by the ERM and spectral ratio methods are identical, which proves the reliability of the new method.
基金financial support for this work contributed by the National Key Research and Development Program of China (grant numbers 2016YFC0600101 and 2016YFC 0600201)the National Natural Science Foundation of China (grant numbers 41874065, 41604076, 41674102, 41674095, 41522401, 41574082, and 41774097)
文摘In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memorysaving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the storage demand is dramatically reduced;therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint inversion problems.
基金supported by the geological survey project(Grant No.DD20220992,Grant No.DD20242841,Grant No.DD20230592 and Grant No.DD20220993)Innovation Foundation of Science and Technology for“Nanhai New Star”Projects(Grant No.NHXXRCXM202353)of Hainan province。
文摘Islands are valuable land resources in the ocean,and their detailed subsurface seismic velocity structures are highly important for underground space utilization,engineering construction,and geological disaster prevention.Ambient noise tomography and the horizontal–vertical spectral ratio(HVSR)method use ambient noise recordings instead of earthquake signals to study the underground velocity structure,making them easy to implement on islands and consequently becoming potential optimization schemes for the investigation of detailed island structures.However,the application of these technologies to small granite islands along coasts is relatively insufficient,and the applicability needs to be further verified.This study ambient noise tomography and HVSR analysis were carried out by using a dense array of seismic data on Wuzhizhou Island,Hainan.It was found that natural activities mainly cause the ambient noise below 8 Hz on Wuzhizhou Island.Moreover,high-quality noise cross-correlation functions of 3–8 Hz can be extracted.The results of ambient noise tomography and HVSR analysis show that the underground S-wave velocity structure and sedimentary characteristics of Wuzhizhou Island are coupled with its topography.The high-terrain area of Wuzhizhou Island exhibits low-velocity anomalies,where a sedimentary layer did not develop.On the other hand,the low-terrain area of Wuzhizhou Island exhibits high-velocity anomalies,where a thin Quaternary sedimentary layer developed.These results imply that subsurface magmatic activity controls the island topography and affects the distribution of the island sedimentary layer.This study successfully verifies the feasibility of detection methods based on ambient noise in small granite islands along the coast.It also provides key basic information for studying the geological evolutionary history,island spatial planning,and geological disaster prevention of Wuzhizhou Island.
基金supported by the National Natural Science Foundation of China(Grant No.41174117 and 41474109)the National Key Basic Research Development Program of China(Grant No.2013CB228606)
文摘The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer.We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation.In this study,we drilled number of receiver holes around the source hole,each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys.We also propose a novel tomographic inversion of the Q factor without the effect of the source signature,and examine its stability and reliability using synthetic data.We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield.The results show that seismic absorption in the nearsurface layer is much greater than that in the subsurface strata.Thus,it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption.In addition,we derive different Q factors from two frequency bands,which can be treated,to some extent,as evidence of a frequency-dependent Q.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40839901)
文摘Seismic attenuation has been inherent media characteristics in which an interesting topic of research, for it reflects the seismic waves propagate. There are many factors that cause seismic wave attenuation, such as geometry attenuation caused by energy dissipating during propagation, friction attenuation by relative sliding among rock grains, and scattering attenuation by rock heterogeneity. In this paper we study P-wave scattering attenuation in a random elastic medium by numerical simulations from a statistical point of view. A random elastic medium model is built based on general stochastic process theory. Then a staggered-grid pseudo-spectral method is used to simulate wave propagation. Scattering attenuation is estimated by the spectral ratio method based on virtual detector records. Random elastic media numerical scatter results with various heterogeneity levels show that the higher heterogeneous levels cause greater scattering attenuation. When the scatter sizes are smaller than a wave length, the larger scatters give a greater attenuation. Finally, we propose a method to evaluate fluid-flow attenuation in porous media. The fluid- flow attenuation is derived from total attenuation and scattering attenuation in random porous media and the attenuation is estimated quantitatively. Results show that in the real seismic frequency range when the heterogeneous scale is about 10^1 meters (less than one wave length), scattering attenuation is larger than fluid-tlow attenuation in random porous media and scattering attenuation is the main factor of seismic attenuation in real heterogeneous porous media.