We use a recently defined quantum spectral function and apply the method of closed-orbit theory to the 2D circular billiard system. The quantum spectra contain rich information of all classical orbits connecting two a...We use a recently defined quantum spectral function and apply the method of closed-orbit theory to the 2D circular billiard system. The quantum spectra contain rich information of all classical orbits connecting two arbitrary points in the well. We study the correspondence between quantum spectra and classical orbits in the circular, 1/2 circular and 1/4 circular wells using the analytic and numerical methods. We find that the peak positions in the Fourier- transformed quantum spectra match accurately with the lengths of the classical orbits. These examples show evidently that semi-classlcal method provides a bridge between quantum and classical mechanics.展开更多
Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions...Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.展开更多
As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring sys...As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.展开更多
In this paper the embedded zerotree wavelet (EZW) method and Huffman coding are proposed to compress infrared (IR) spectra. We found that this technique is much better than others in terms of efficiently coding wavele...In this paper the embedded zerotree wavelet (EZW) method and Huffman coding are proposed to compress infrared (IR) spectra. We found that this technique is much better than others in terms of efficiently coding wavelet coefficients because the zerotree quantization is an effective way of exploiting the self-similarities of wavelet coefficients at various resolutions.展开更多
Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The resul...Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.展开更多
The variety of definitions of Fourier transforms can create confusion for practical applications. This paper examines the choice of formulas for Fourier transforms and determines the appropriate choices for geoscience...The variety of definitions of Fourier transforms can create confusion for practical applications. This paper examines the choice of formulas for Fourier transforms and determines the appropriate choices for geoscience applications. One set of Discrete Fourier Transforms can be defined that approximate Fourier integrals and provide transforms between sampled continuous functions in both domains. For applications involving transforms between a continuous function and a discrete function a second set of Discrete Fourier Transforms is needed with different scaling factors. Two classes of application are presented: those where either form of transforms can be used and those where it is necessary to use a particular transform to obtain the correct results.展开更多
The translational motion of a large polaron as whole is analyzed in the context of its effect on the broadening of an absorption optical spectrum. It was open question how important the role of translational degrees o...The translational motion of a large polaron as whole is analyzed in the context of its effect on the broadening of an absorption optical spectrum. It was open question how important the role of translational degrees of freedom and the corresponding velocities are on the broadening. The Bogolyubov method of canonical transformation of coordinates is formulated for a system of an electron and field, taking into account rigorous fulfillment of the conservation laws. Separation of variables is carried out for the coordinates describing the translational degrees of freedom and the electron oscillations in a polarization well. The equations obtained for the electronic states explicitly depend on the velocity of the free polaron as a whole. An estimate is made for free polaron in ammonia.展开更多
In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the ...In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the causes of producing higher-order spectrum components and inducing spectrum overlapping are analysed theoretically, and a simple physical ex- planation and analytical deduction are given. Secondly, aiming to suppress spectrum overlapping and improve measurement accuracy, the influence of spatial carrier frequency of projection grating on them is analysed. A method of increasing the spatial carrier frequency of projection grating to restrain or reduce the spectrum overlapping significantly is proposed. We then analyze the mechanism of how the spectrum overlapping is reduced. Finally, the simulation results and experimental measurements verify the correction of the proposed theory and method.展开更多
Blood plays an important role in the clinical di-agnosis and treatment, the analysis of blood will be of very important practical significance. The experiment shows that the absorption spectra of blood are of serious ...Blood plays an important role in the clinical di-agnosis and treatment, the analysis of blood will be of very important practical significance. The experiment shows that the absorption spectra of blood are of serious noise in the wave band of 200 to 300 nm, which hides the useful spectral characteristics. The effective separation of the noise was achieved by db4 wavelet transform, and the signals of reconstruction have been obviously improved in the noise serious wave band, reflecting some useful information. The absorption peaks of different samples are displaced to some degrees. The correlation between absorbance at 278nm and blood fat concentration is no significant and random. Based on the evident correlation between serum absorption spectrum and blood fat con-centration in the wave band of 265 to 282nm, a neural network model was built to forecast the blood fat concentration, bringing a relatively good prediction. This provides a new spectral test method of blood fat concentration.展开更多
The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric m...The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric motion and transports in the domain of wave number frequency space have been derived. The contributions of the nonlinear interactions of the atmospheric waves in velocity and temperature fields to the conversion of kinetic and potential energies and to the meridional transports of angular momentum and sensible heat in the atmosphere have been discussed.展开更多
文摘We use a recently defined quantum spectral function and apply the method of closed-orbit theory to the 2D circular billiard system. The quantum spectra contain rich information of all classical orbits connecting two arbitrary points in the well. We study the correspondence between quantum spectra and classical orbits in the circular, 1/2 circular and 1/4 circular wells using the analytic and numerical methods. We find that the peak positions in the Fourier- transformed quantum spectra match accurately with the lengths of the classical orbits. These examples show evidently that semi-classlcal method provides a bridge between quantum and classical mechanics.
基金Supported by the National Natural Science Foundation of China (41071276 and 41101395)China Postdoctoral Science Foundation (20110490317)Postdoctoral Science Foundation of Beijing Academy of Agriculture and Forestry Sciences (2011)
文摘Based on the field hyperspectral data from the analytical spectral devices (ASD) spectrometer, we characterized the spectral properties of rice canopies infested with brown spot disease and selected spectral regions and bands sensitive to four severity degrees (severe, moderate, light, and healthy). The results show that the curves' variation on the original and the first- and second-order de- rivative curves are greatly different, but the spectral difference in the near-infrared region is the most obvious for each level. Specifically, the peaks are located at 822, 738, and 793 nm, while the valleys are located at 402, 570, and 753 run, respectively. The sensitive regions are between 430-520, 530-550, and 650-710 nm, and the bands are 498, 539, and 673 nm in the sensitivity analysis, while they are in the ranges of 401-530, 550-730 as well as at 498 nm and 678 nm in the continuum removal.
基金supported by National Key Scientific Instrument and Equipment Development Project of China,Grant Nos.2013YQ220643the National 863 Program of China,Grant Nos.2014AA06A503.
文摘As important components of air pollutant,volatile organic compounds(VOCs)can cause great harm to environment and human body.The concentration change of VOCs should be focused on in real-time environment monitoring system.In order to solve the problem of wavelength redundancy in full spectrum partial least squares(PLS)modeling for VOCs concentration analysis,a new method based on improved interval PLS(iPLS)integrated with Monte-Carlo sampling,called iPLS-MC method,was proposed to select optimal characteristic wavelengths of VOCs spectra.This method uses iPLS modeling to preselect the characteristic wavebands of the spectra and generates random wavelength combinations from the selected wavebands by Monte-Carlo sampling.The wavelength combination with the best prediction result in regression model is selected as the characteristic wavelengths of the spectrum.Different wavelength selection methods were built,respectively,on Fourier transform infrared(FTIR)spectra of ethylene and ethanol gas at different concentrations obtained in the laboratory.When the interval number of iPLS model is set to 30 and the Monte-Carlo sampling runs 1000 times,the characteristic wavelengths selected by iPLS-MC method can reduce from 8916 to 10,which occupies only 0.22%of the full spectrum wavelengths.While the RMSECV and correlation coefficient(Rc)for ethylene are 0.2977 and 0.9999 ppm,and those for ethanol gas are 0.2977 ppm and 0.9999.The experimental results show that the iPLS-MC method can select the optimal characteristic wavelengths of VOCs FTIR spectra stably and effectively,and the prediction performance of the regression model can be significantly improved and simplified by using characteristic wavelengths.
基金supported by the National Natural Science Foundmion of China(No.29877016).
文摘In this paper the embedded zerotree wavelet (EZW) method and Huffman coding are proposed to compress infrared (IR) spectra. We found that this technique is much better than others in terms of efficiently coding wavelet coefficients because the zerotree quantization is an effective way of exploiting the self-similarities of wavelet coefficients at various resolutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374061 and 10774093)
文摘Based on the extended closed-orbit theory together with spectral analysis, this paper studies the correspondence between quantum mechanics and the classical counterpart in a two-dimensional annular billiard. The results demonstrate that the Fourier-transformed quantum spectra are in very good accordance with the lengths of the classical ballistic trajectories, whereas spectral strength is intimately associated with the shapes of possible open orbits connecting arbitrary two points in the annular cavity. This approach facilitates an intuitive understanding of basic quantum features such as quantum interference, locations of the wavefunctions, and allows quantitative calculations in the range of high energies, where full quantum calculations may become impractical in general. This treatment provides a thread to explore the properties of microjunction transport and even quantum chaos under the much more general system.
文摘The variety of definitions of Fourier transforms can create confusion for practical applications. This paper examines the choice of formulas for Fourier transforms and determines the appropriate choices for geoscience applications. One set of Discrete Fourier Transforms can be defined that approximate Fourier integrals and provide transforms between sampled continuous functions in both domains. For applications involving transforms between a continuous function and a discrete function a second set of Discrete Fourier Transforms is needed with different scaling factors. Two classes of application are presented: those where either form of transforms can be used and those where it is necessary to use a particular transform to obtain the correct results.
文摘The translational motion of a large polaron as whole is analyzed in the context of its effect on the broadening of an absorption optical spectrum. It was open question how important the role of translational degrees of freedom and the corresponding velocities are on the broadening. The Bogolyubov method of canonical transformation of coordinates is formulated for a system of an electron and field, taking into account rigorous fulfillment of the conservation laws. Separation of variables is carried out for the coordinates describing the translational degrees of freedom and the electron oscillations in a polarization well. The equations obtained for the electronic states explicitly depend on the velocity of the free polaron as a whole. An estimate is made for free polaron in ammonia.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173122, 60970098, 60803024, 90715043, and 61144006)the Postdoctoral Startup Foundation of Central South University, China (Grant No. 1332/74341016030)
文摘In Fourier transform profilometry (FTP), we must restrain spectrum overlapping caused by the nonlinearity of the charge coupled device (CCD) and increase the measurement accuracy of the object shape. Firstly, the causes of producing higher-order spectrum components and inducing spectrum overlapping are analysed theoretically, and a simple physical ex- planation and analytical deduction are given. Secondly, aiming to suppress spectrum overlapping and improve measurement accuracy, the influence of spatial carrier frequency of projection grating on them is analysed. A method of increasing the spatial carrier frequency of projection grating to restrain or reduce the spectrum overlapping significantly is proposed. We then analyze the mechanism of how the spectrum overlapping is reduced. Finally, the simulation results and experimental measurements verify the correction of the proposed theory and method.
文摘Blood plays an important role in the clinical di-agnosis and treatment, the analysis of blood will be of very important practical significance. The experiment shows that the absorption spectra of blood are of serious noise in the wave band of 200 to 300 nm, which hides the useful spectral characteristics. The effective separation of the noise was achieved by db4 wavelet transform, and the signals of reconstruction have been obviously improved in the noise serious wave band, reflecting some useful information. The absorption peaks of different samples are displaced to some degrees. The correlation between absorbance at 278nm and blood fat concentration is no significant and random. Based on the evident correlation between serum absorption spectrum and blood fat con-centration in the wave band of 265 to 282nm, a neural network model was built to forecast the blood fat concentration, bringing a relatively good prediction. This provides a new spectral test method of blood fat concentration.
文摘The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric motion and transports in the domain of wave number frequency space have been derived. The contributions of the nonlinear interactions of the atmospheric waves in velocity and temperature fields to the conversion of kinetic and potential energies and to the meridional transports of angular momentum and sensible heat in the atmosphere have been discussed.