期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TDSC-Net:一种基于注意力机制与特征融合的二维恒星光谱分类模型
1
作者 李荣 曹冠龙 +4 位作者 蒲源 邱波 王晓敏 闫静 王坤 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1968-1973,共6页
面对信噪比较低的天体,传统一维光谱的分类效果很差。因此,从二维光谱出发,提出了结合注意力机制的特征融合模型TDSC-Net(two-dimensional spectra classification network)用于恒星分类。TDSC-Net通过完全相同的特征提取层分别对恒星... 面对信噪比较低的天体,传统一维光谱的分类效果很差。因此,从二维光谱出发,提出了结合注意力机制的特征融合模型TDSC-Net(two-dimensional spectra classification network)用于恒星分类。TDSC-Net通过完全相同的特征提取层分别对恒星蓝端和红端的二维光谱图像进行特征提取,之后针对这些特征进行融合,然后进行分类。本文实验中的恒星光谱数据选自LAMOST(the large sky area multi-object fiber spectroscopic telescope)数据库,预处理采用Z-score进行光谱归一化,以减少由于光谱流量值差别大造成的模型收敛困难问题。使用精确率(Precision)、召回率(Recall)、F1-score和准确率(Accuracy)四个指标来评估模型性能。实验包括:第一部分利用TDSC-Net进行A、F、G、K、M型恒星分类,以验证利用二维光谱对恒星多分类的可靠性;第二部分将二维光谱按照不同的信噪比区间进行分类,以探究信噪比对分类准确率的影响。第一部分的结果表明,进行五分类总的准确率达到84.3%。其中,A、F、G、K、M各自的分类精度分别为87.0%,84.6%,81.2%,87.4%,89.7%,均优于自行抽谱后的一维光谱分类结果。第二部分的结果表明,即使在SNR<30的低信噪比区间,二维光谱分类准确率仍然可以达到78.9%;而当SNR>30之后,信噪比对光谱分类的影响就不明显了。由此证明了低信噪比时使用二维光谱分类的重要性以及TDSC-Net对恒星光谱分类的有效性。 展开更多
关键词 恒星分类 卷积神经网络 注意力机制 Two-dimensional spectra classification network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部