Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial het...Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.展开更多
Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and ...Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and reanalysis data(MERRA-2)from March 2007 to February 2015(eight years).The horizontal distribution reveals lower cirrus fraction values in the northern SCS and higher values in the southern region,with minima observed in March and April and maxima sequentially occurring in August(northern SCS,NSCS),September(middle SCS,MSCS),and December(southern SCS,SSCS).Vertically,the cirrus fraction peaks in summer and reaches its lowest levels in spring.Opaque cirrus dominates during summer in the NSCS and MSCS,comprising 53.6%and 55.9%,respectively,while the SSCS exhibits a higher frequency of opaque cirrus relative to other cloud types.Subvisible cirrus clouds have the lowest frequency year-round,whereas thin cirrus is most prominent in winter in the NSCS(46.3%)and in spring in the MSCS(45.3%).A case study from September 2021 further explores the influence of ice crystal habits on brightness temperature(BT)over the SCS.Simulations utilizing five ice crystal shapes from the ARTS DDA(Atmospheric Radiative Transfer Simulator Discrete Dipole Approximation)database and the RTTOV 12.4 radiative transfer model reveal that the 8-column-aggregate shape best represents BT in the NSCS and SSCS,while the large-block-aggregate shape performs better in the SSCS.展开更多
Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose a...Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.展开更多
As advancements in the Internet of Things(IoT)and unmanned technologies continues to progress,the development of unmanned system of systems(USS)has reached unprecedented levels.While prior research has predominantly e...As advancements in the Internet of Things(IoT)and unmanned technologies continues to progress,the development of unmanned system of systems(USS)has reached unprecedented levels.While prior research has predominantly examined temporal variations in USS resilience,spatial changes remain underexplored.However,USS may involve kinetic engagements and frequent spatial changes during mission execution,affecting signal interference in data layer communications.Although time-dependent factors primarily govern mission effectiveness of the USS,spatial factors influence the transmission stability of the data layer.Consequently,assessing spatiotemporal variations in USS performance is critical.To address these challenges,this study introduces a spatiotemporal resilience assessment framework,which evaluates USS resilience across both temporal and spatial dimensions.Furthermore,we propose a spatiotemporal resilience optimization scheme that enhances system adaptability throughout the mission lifecycle,with a particular emphasis on prevention and recovery strategies.Finally,we validate the validity of the proposed concepts and methods with a case study featuring a regular hexagonal deployment of USS.The results show that the spatiotemporal resilience can better reflect the spatial change characteristics of USS,and the proposed optimization strategy improves the prevention spatiotemporal resilience,recovery spatiotemporal resilience,and entire-process spatiotemporal resilience of USS by 0.22%,8.39%,and 11.29%,respectively.展开更多
Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosyste...Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.展开更多
Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental chall...Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.展开更多
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ...Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.展开更多
This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data fr...This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data from the Infrared Atmospheric Sounding Interfer-ometer(IASI),Generalized Additive Models(GAM),and the GEOS-Chem chemical transport model,we observed a significant increase of NH_(3)VCDs in the YRD between 2014 and 2020.The spatial distribution analysis revealed higher NH_(3)concentrations in the northern part of the YRD region,primarily due to lower precipitation,alkaline soil,and intensive agricul-tural activities.NH_(3)VCDs in the YRD region increased significantly(65.18%)from 2008 to 2020.The highest growth rate occurs in the summer,with an annual average growth rate of 7.2%during the period from 2014 to 2020.Agricultural emissions dominated NH_(3)VCDs during spring and summer,with high concentrations primarily located in the agricultural areas adjacent to densely populated urban zones.Regions within several large urban areas have been discovered to exhibit relatively stable variations in NH_(3)VCDs.The rise in NH_(3)VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO_(2),as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem model.The concentration changes of acidic gases contribute to over 80%of the interannual variations in NH_(3)VCDs.This emphasizes the crucial role of environmental policies targeting the reduction of these acidic gases.Effective emission control is urgent tomitigate environmental hazards and secondary particulate matter,especially in the northern YRD.展开更多
The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainabl...The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.展开更多
The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Usi...The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Using high-resolution micro-camera imaging,this study analyzed 905 skin images,33 skin transcriptomes,272 whole-genome sequences,and 182 downloaded transcriptomes.Morphological assessment from juvenile to adult stages revealed the thickening of hair shafts accompanied by a progressive decline in density,largely attributable to rapid surface expansion of the trunk skin.Transcriptomic comparison between high-and low-CHD individuals identified 572 differentially expressed genes(DEGs).A genome-wide association study detected 25 significant single nucleotide polymorphisms(P<9.07e-8)and mapped 48 annotated genes,with the most prominent association signal located near GJA1 on chr9.15931585-18621011.Literature review and Venn analysis highlighted six genes(GJA1,GPRC5D,CD1D,CD207,TFAM,and CXCL12)with documented roles in skin and hair biology,and three genes(GJA1,GPRC5D,and ATP6V1B1)overlapped with DEGs.Multiple-tissue transcriptomic profiling,western blotting,immunohistochemical staining,and skin single-cell RNA sequencing confirmed that GJA1 and GPRC5D were highly and specifically expressed in skin,particularly within hair follicles.Expression was localized predominantly to follicular stem cells and dermal papilla cells,suggesting a significant role in folliculogenesis and structural maintenance.Cross-validation using four public datasets further demonstrated positive correlations between GJA1 and GPRC5D expression and hair follicle density.The innovative micro-camera application allowed the elucidation of spatiotemporal patterns and genes associated with CHD,thereby addressing a significant knowledge gap in animal hair density.展开更多
Benzene,toluene,ethylbenzene,and xylene(BTEX)pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects,carcinogenic properties,and adverse effects on air...Benzene,toluene,ethylbenzene,and xylene(BTEX)pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects,carcinogenic properties,and adverse effects on air quality.BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities,necessitating the assessment of atmospheric concentrations and their spatial variation.This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India.The study investigates the correlation of BTEX with other criteria pollutants andmeteorological parameters,aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions.Additionally,the paper categorizes various regions in India according to the Air Quality Index(AQI)based on BTEX pollution levels.The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central,eastern,and western regions.In contrast,the southern zone experiences the least pollution with BTEX.Seasonal analysis indicates that winter and postmonsoon periods,characterized by lower temperatures,are associated with higher BTEX levels due to the accumulation of localized emissions.When comparing the different zones in India,high traffic emissions and localized activities,such as solvent use and solvent evaporation,are found to be the primary sources of BTEX.The findings of the current study aid in source characterization and identification,and better understanding of the region’s air quality problems,which helps in the development of focused BTEX pollution reduction and control strategies.展开更多
Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security ...Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.展开更多
Objective This study aimed to identify high-risk areas for type 2 diabetes mellitus(T2DM)mortality to provide relevant evidence for interventions in emerging economies.Methods Empirical Bayesian Kriging and a discrete...Objective This study aimed to identify high-risk areas for type 2 diabetes mellitus(T2DM)mortality to provide relevant evidence for interventions in emerging economies.Methods Empirical Bayesian Kriging and a discrete Poisson space-time scan statistic were applied to identify the spatiotemporal clusters of T2DM mortality.The relationships between economic factors,air pollutants,and the mortality risk of T2DM were assessed using regression analysis and the Poisson Log-linear Model.Results A coastal district in East Guangdong,China,had the highest risk(Relative Risk[RR]=4.58,P<0.01),followed by the 10 coastal districts/counties in West Guangdong,China(RR=2.88,P<0.01).The coastal county in the Pearl River Delta,China(RR=2.24,P<0.01),had the third-highest risk.The remaining risk areas were two coastal counties in East Guangdong,16 districts/counties in the Pearl River Delta,and two counties in North Guangdong,China.Mortality due to T2DM was associated with gross domestic product per capita(GDP per capita).In pilot assessments,T2DM mortality was significantly associated with carbon monoxide.Conclusion High mortality from T2DM occurred in the coastal areas of East and West Guangdong,especially where the economy was progressing towards the upper middle-income level.展开更多
The shear behavior of intact loess is intricately linked to the spatiotemporal evolution of its mesoscopic characteristics.Understanding this relationship is crucial for comprehending and preventing loess landslides.T...The shear behavior of intact loess is intricately linked to the spatiotemporal evolution of its mesoscopic characteristics.Understanding this relationship is crucial for comprehending and preventing loess landslides.To systematically investigate this connection,our study conducted triaxial shear tests on both Malan loess and Lishi loess,encompassing variations in confining pressures.Additionally,nondestructive,real-time CT observations were employed to track the dynamic evolution of loess mesostructures.The experimental findings illuminate significant insights.The Malan loess exhibits strain hardening during shearing,with the degree of hardening exhibiting an increase in tandem with rising confining pressure.Conversely,the Lishi loess manifests a transition from strain softening to strain hardening as confining pressure increases.Under elevated confining pressure,the specimen undergoes structural damage while concurrently forming a denser configuration through particle friction and rearrangement,leading to strain hardening and volume reduction.In contrast,the central portion of the specimen exhibits heightened sensitivity to deformation under low confining pressures.Gradual crack expansion,emanating from the center and progressing towards the ends,results in progressive specimen destruction and a concomitant reduction in stress.On a macroscopic level,the specimen undergoes expansion at its center while contracting at its ends.The findings of this study unveil the intricate mechanisms governing loess deformation in the presence of varying confining pressures,thereby contributing significantly to our understanding of loess landslide formation and providing a robust theoretical framework for preventive measures.展开更多
A comprehensive understanding of vegetation responses to climate extremes is essential for predicting ecological risks.The Tianshan Mountains,the world's largest arid mountain system,are ecologically vulnerable to...A comprehensive understanding of vegetation responses to climate extremes is essential for predicting ecological risks.The Tianshan Mountains,the world's largest arid mountain system,are ecologically vulnerable to climate extremes,yet the spatiotemporal heterogeneity of vegetation responses is not well understood.To address this,we assessed changes in vegetation phenophases using the green-up date(GUD)and the monthly maximum vegetation index(MVI).Their relationship with climate extremes across seasons and geographic units was analyzed using Classification and Regression Tree and Principal Component Analysis.Results indicate that GUD advanced by 0.276 days/year,with MVI increasing in spring and decreasing in summer.On a yearly scale,nighttime heatwaves advanced GUD in all vegetation types at lower altitudes with higher snow cover,whereas daytime heatwaves delayed GUD in grasslands.On a monthly scale,early spring heatwaves generally benefitted vegetation,with positive effects decreasing from forests to grasslands:forests benefitted from March to May,forest-grassland from March to April,and grasslands only in March.By late summer,heatwaves were negatively correlated with MVI across all vegetation types.This study highlights the complex responses of vegetation to climate extremes and underscores the vulnerability of high-altitude,low snow-covered grasslands,which is crucial for guiding restoration efforts.展开更多
Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetatio...Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetation productivity remain inadequately understood.In this study,we analyzed soil moisture(SM),vapor pressure deficit(VPD),and gross primary productivity(GPP)to investigate their spatiotemporal patterns and the combined effects on GPP over China.The results revealed that:(1)Soil drought and meteorological drought generally exhibited temporally synchronous trends across China.(2)GPP was predominantly affected by the combined and synchronous effects of both SM and VPD,although their effects displayed directional variability differences in certain regions.(3)SM demonstrated a greater relative importance on GPP than VPD across more than half of the regions in China,whereas deciduous broadleaf forests were the only vegetation type primarily affected by VPD.(4)Under the lag effects,both SM and VPD exhibited bidirectional Granger causality with GPP,with the interaction between VPD and GPP proving more pronounced than that of SM.Our research provides valuable insights into the mechanisms through which SM and VPD influence GPP,contributing to improved predictions vegetation productivity and implementing ecological restoration.展开更多
The impact of climate change on vegetation ecosystems is a prominent focus in global climate change research.The climate change affects vegetation growth and ecosystem stability in the upper reaches of the Yellow Rive...The impact of climate change on vegetation ecosystems is a prominent focus in global climate change research.The climate change affects vegetation growth and ecosystem stability in the upper reaches of the Yellow River(UYR).However,the spatiotemporal patterns and driving mechanisms of vegetation growth status(VGS)in the region remain poorly understood.Based on the hydrological model PLS,an innovative WEP-CHC model was developed by integrating regional environmental and vegetation growth characteristics.Furthermore,combined with the PLS-SEM model and other methods,this study systematically investigated the spatiotemporal patterns and driving mechanisms of VGS in the UYR.The results indicated that:①VGS exhibited significant spatiotemporal variation trends within the study area.In the study period of 1970–2020,the GPP onset time was significantly advanced(p<0.05)while the GPP peak value was significantly increased.Spatial analysis revealed significant spatial complexity in the GPP onset time and peak values across the region.②Soil freeze-thaw conditions significantly influenced VGS(p<0.05).The complete thawing time of permafrost was closely coincided with the GPP onset time,with a correlation coefficient exceeding 0.84.After controlling soil freeze-thaw effects using partial correlation analysis,it was found that better initial soil hydrothermal conditions would lead to better VGS;③The model constructed with annual hydrothermal conditions(AHC),soil freeze-thaw period(SFTP),vegetation growth season(VGS),initial soil hydrothermal conditions(ISHC),and annual solar radiation conditions(ASRC),demonstrated good explanatory power for vegetation growth.The R^(2)values of PLS-SEM were above 0.76 in all five subregions.However,their effects on VGS varied significantly across subregions.Overall,AHC and SFTP were the dominant factors in all subregions.Furthermore,the impacts of ISHC and VGC were statistically insignificant,whereas the effects of ASRC exhibited high complexity.This study not only provides new insights into the current state of hydrological-ecological coupling in the UYR but also offers a new tool for ecological conservation and sustainable water management in other cold regions and similar watersheds worldwide.展开更多
The authors regret to report the following error made in“Spatiotemporal dynamics of neuron differentiation and migration in the developing human spinal cord;52(2025)-101283-1295;Doi:https://doi.org/10.1016/j.jgg.2025...The authors regret to report the following error made in“Spatiotemporal dynamics of neuron differentiation and migration in the developing human spinal cord;52(2025)-101283-1295;Doi:https://doi.org/10.1016/j.jgg.2025.08.004”.In Tables S1 and S2 in the supplementary materials of this paper,some items were written in Chinese.The corresponding pictures and tables were not uploaded in time.展开更多
Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates th...Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates the spatiotemporal variation and diversity of microplastic on the coastal beaches in Xiamen City,China,considering the combined effects of seasons,human activities,and physicochemical properties of sediments.It is detected that the abundance of microplastics in Xiamen beaches was 0.271±0.01 items/g.The abundance of microplastics in dry season was significantly higher than in rainy season.In terms of spatial variation,the beaches that attracted a larger number of tourists exhibited significantly higher microplastic abundance.The temporal pattern of microplastic distribution on different beaches varied greatly due to region-specific human activities(e.g.,mangrove restoration project)and sedimentary properties(e.g.,bulk density).When the assemblage of microplastics in the coastal area was viewed as a biological community,the Shannon-Wiener index and Pielou's index were higher in rainy season and in the beaches with high intensity of tourist activities,which suggests that the human activities and the surface runoff may contribute to the diversity of microplastics on coastal beaches.Future investigations are encouraged to combine controlled experiments and long-term monitoring at multiple scales to elucidate the underlying mechanisms and factors associated with microplastic pollution in coastal zone.展开更多
Diabetes imposes a substantial burden on global healthcare systems.Worldwide,nearly half of individuals with diabetes remain undiagnosed,while conventional diagnostic techniques are often invasive,painful,and expensiv...Diabetes imposes a substantial burden on global healthcare systems.Worldwide,nearly half of individuals with diabetes remain undiagnosed,while conventional diagnostic techniques are often invasive,painful,and expensive.In this study,we propose a noninvasive approach for diabetes detection using photoplethysmography(PPG),which is widely integrated into modern wearable devices.First,we derived velocity plethysmography(VPG)and acceleration plethysmography(APG)signals from PPG to construct multi-channel waveform representations.Second,we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal,statistical,and nonlinear features with recursive feature elimination and deep feature extraction using a one-dimensional statistical convolutional neural network(1DSCNN).Finally,we developed an interpretable diabetes detection method based on XGBoost,with explainable artificial intelligence(XAI)techniques.Specifically,SHapley Additive exPlanations(SHAP)and Local InterpretableModel-agnostic Explanations(LIME)were employed to identify and interpret potential digital biomarkers associated with diabetes.To validate the proposed method,we extended the publicly available Guilin People’s Hospital dataset by incorporating in-house clinical data from ten subjects,thereby enhancing data diversity.A subject-independent cross-validation strategy was applied to ensure that the testing subjects remained independent of the training data for robust generalization.Compared with existing state-of-the-art methods,our approach achieved superior performance,with an area under the curve(AUC)of 80.5±15.9%,sensitivity of 77.2±7.5%,and specificity of 64.3±18.2%.These results demonstrate that the proposed approach provides a noninvasive,interpretable,and accessible solution for diabetes detection using PPG signals.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42305147 and 42405138)the Natural Science Foundation of Jiangsu Province(No.BK20230428).
文摘Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.
基金supported by the National Natural Science Foundation of China(Grant Nos.42027804,41775026,and 41075012)。
文摘Cirrus clouds play a crucial role in the energy balance of the Earth-atmosphere system.We investigated the spatiotemporal variations of cirrus over the South China Sea(SCS)using satellite data(MOD08,MYD08,CALIPSO)and reanalysis data(MERRA-2)from March 2007 to February 2015(eight years).The horizontal distribution reveals lower cirrus fraction values in the northern SCS and higher values in the southern region,with minima observed in March and April and maxima sequentially occurring in August(northern SCS,NSCS),September(middle SCS,MSCS),and December(southern SCS,SSCS).Vertically,the cirrus fraction peaks in summer and reaches its lowest levels in spring.Opaque cirrus dominates during summer in the NSCS and MSCS,comprising 53.6%and 55.9%,respectively,while the SSCS exhibits a higher frequency of opaque cirrus relative to other cloud types.Subvisible cirrus clouds have the lowest frequency year-round,whereas thin cirrus is most prominent in winter in the NSCS(46.3%)and in spring in the MSCS(45.3%).A case study from September 2021 further explores the influence of ice crystal habits on brightness temperature(BT)over the SCS.Simulations utilizing five ice crystal shapes from the ARTS DDA(Atmospheric Radiative Transfer Simulator Discrete Dipole Approximation)database and the RTTOV 12.4 radiative transfer model reveal that the 8-column-aggregate shape best represents BT in the NSCS and SSCS,while the large-block-aggregate shape performs better in the SSCS.
基金supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(NO.SML2021SP201)the National Natural Science Foundation of China(Grant No.42306200 and 42306216)+2 种基金the National Key Research and Development Program of China(Grant No.2023YFC3008100)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311021004)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(Project No.SL2021ZD203)。
文摘Tropical cyclones(TCs)are complex and powerful weather systems,and accurately forecasting their path,structure,and intensity remains a critical focus and challenge in meteorological research.In this paper,we propose an Attention Spatio-Temporal predictive Generative Adversarial Network(AST-GAN)model for predicting the temporal and spatial distribution of TCs.The model forecasts the spatial distribution of TC wind speeds for the next 15 hours at 3-hour intervals,emphasizing the cyclone's center,high wind-speed areas,and its asymmetric structure.To effectively capture spatiotemporal feature transfer at different time steps,we employ a channel attention mechanism for feature selection,enhancing model performance and reducing parameter redundancy.We utilized High-Resolution Weather Research and Forecasting(HWRF)data to train our model,allowing it to assimilate a wide range of TC motion patterns.The model is versatile and can be applied to various complex scenarios,such as multiple TCs moving simultaneously or TCs approaching landfall.Our proposed model demonstrates superior forecasting performance,achieving a root-mean-square error(RMSE)of 0.71 m s^(-1)for overall wind speed and 2.74 m s^(-1)for maximum wind speed when benchmarked against ground truth data from HWRF.Furthermore,the model underwent optimization and independent testing using ERA5reanalysis data,showcasing its stability and scalability.After fine-tuning on the ERA5 dataset,the model achieved an RMSE of 1.33 m s^(-1)for wind speed and 1.75 m s^(-1)for maximum wind speed.The AST-GAN model outperforms other state-of-the-art models in RMSE on both the HWRF and ERA5 datasets,maintaining its superior performance and demonstrating its effectiveness for spatiotemporal prediction of TCs.
基金support for this research from the Natural Science Foundation of Henan Province(252300421005).
文摘As advancements in the Internet of Things(IoT)and unmanned technologies continues to progress,the development of unmanned system of systems(USS)has reached unprecedented levels.While prior research has predominantly examined temporal variations in USS resilience,spatial changes remain underexplored.However,USS may involve kinetic engagements and frequent spatial changes during mission execution,affecting signal interference in data layer communications.Although time-dependent factors primarily govern mission effectiveness of the USS,spatial factors influence the transmission stability of the data layer.Consequently,assessing spatiotemporal variations in USS performance is critical.To address these challenges,this study introduces a spatiotemporal resilience assessment framework,which evaluates USS resilience across both temporal and spatial dimensions.Furthermore,we propose a spatiotemporal resilience optimization scheme that enhances system adaptability throughout the mission lifecycle,with a particular emphasis on prevention and recovery strategies.Finally,we validate the validity of the proposed concepts and methods with a case study featuring a regular hexagonal deployment of USS.The results show that the spatiotemporal resilience can better reflect the spatial change characteristics of USS,and the proposed optimization strategy improves the prevention spatiotemporal resilience,recovery spatiotemporal resilience,and entire-process spatiotemporal resilience of USS by 0.22%,8.39%,and 11.29%,respectively.
基金National Nonprofit Institute Research Grant of CAF,No.CAFYBB2018ZA004,No.CAFYBB2023ZA009Fengyun Application Pioneering Project,No.FY-APP-ZX-2023.02。
文摘Water use efficiency(WUE),as a pivotal indicator of the coupling degree within the carbon–water cycle of ecosystems,holds considerable importance in assessment of the carbon–water balance within terrestrial ecosystems.However,in the context of global warming,WUE evolution and its primary drivers on the Tibetan Plateau remain unclear.This study employed the ensemble empirical mode decomposition method and the random forest algorithm to decipher the nonlinear trends and drivers of WUE on the Tibetan Plateau in 2001–2020.Results indicated an annual mean WUE of 0.8088 gC/mm·m^(2)across the plateau,with a spatial gradient reflecting decrease from the southeast toward the northwest.Areas manifesting monotonous trends of increase or decrease in WUE accounted for 23.64%and 9.69%of the total,respectively.Remarkably,66.67%of the region exhibited trend reversals,i.e.,39.94%of the area of the Tibetan Plateau showed transition from a trend of increase to a trend of decrease,and 26.73%of the area demonstrated a shift from a trend of decrease to a trend of increase.Environmental factors accounted for 70.79%of the variability in WUE.The leaf area index and temperature served as the major driving forces of WUE variation.
文摘Population growth leads to increased utilization of water resources.One of these resources is groundwater,which has steadily declined each year.The depletion of these resources brings about various environmental challenges.The present study aimed to explore the relationship between groundwater fluctuations and land subsidence in the Malayer Plain,Iran,focusing on quantifying subsidence resulting from groundwater extraction.Using Sentinel-1 satellite data(2014–2019)and monthly piezometric measurements(1996–2018),the analysis revealed an average deformation velocity of–6.3 cm yr–1,with accumulated subsidence of–32 cm over the 2014–2019 period.The maximum subsidence rate reached 10.3 cm yr–1 in areas of intensive agricultural activity.A wavelet-PCA spatiotemporal analysis of groundwater fluctuations identified critical multi-scale patterns strongly correlated with subsidence trends.Regression analysis between subsidence rates and groundwater fluctuations at various wavelet decomposition levels explained 75%of the variance(R2=0.75),indicating that intermediate-scale groundwater declines were the primary drivers of subsidence.Furthermore,land use analysis using Landsat data(1999–2021)revealed a 6230-ha increase in irrigated farmland,contributing to heightened groundwater extraction and subsidence rates.These findings highlight the critical need for sustainable groundwater management to mitigate the risks of continued subsidence in the region.
基金supported by the National Key Research and Development Program of China (Nos.2022YFC3702000 and 2022YFC3703500)the Key R&D Project of Zhejiang Province (No.2022C03146).
文摘Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.
基金supported by the Joint Funds of the National Natural Science Foundation of China(No.U21A2027)the New Cornerstone Science Foundation through the XPLORER PRIZE(2023-1033).
文摘This study focuses on the spatiotemporal distribution,urban-rural variations,and driving factors of ammonia Vertical Column Densities(VCDs)in China’s Yangtze River Delta region(YRD)from 2008 to 2020.Utilizing data from the Infrared Atmospheric Sounding Interfer-ometer(IASI),Generalized Additive Models(GAM),and the GEOS-Chem chemical transport model,we observed a significant increase of NH_(3)VCDs in the YRD between 2014 and 2020.The spatial distribution analysis revealed higher NH_(3)concentrations in the northern part of the YRD region,primarily due to lower precipitation,alkaline soil,and intensive agricul-tural activities.NH_(3)VCDs in the YRD region increased significantly(65.18%)from 2008 to 2020.The highest growth rate occurs in the summer,with an annual average growth rate of 7.2%during the period from 2014 to 2020.Agricultural emissions dominated NH_(3)VCDs during spring and summer,with high concentrations primarily located in the agricultural areas adjacent to densely populated urban zones.Regions within several large urban areas have been discovered to exhibit relatively stable variations in NH_(3)VCDs.The rise in NH_(3)VCDs within the YRD region was primarily driven by the reduction of acidic gases like SO_(2),as emphasized by GAM modeling and sensitivity tests using the GEOS-Chem model.The concentration changes of acidic gases contribute to over 80%of the interannual variations in NH_(3)VCDs.This emphasizes the crucial role of environmental policies targeting the reduction of these acidic gases.Effective emission control is urgent tomitigate environmental hazards and secondary particulate matter,especially in the northern YRD.
基金supported by the funding provided by the State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL2210)National Natural Science Foundation of China(42171304)+1 种基金the Sichuan Science and Technology Program(2023YFS0380)Natural Science Foundation of Jiangsu Province of China(BK20242018)。
文摘The Yellow River Basin in Sichuan Province(YRS)is undergoing severe soil erosion and exacerbated ecological vulnerability,which collectively pose formidable challenges for regional water conservation(WC)and sustainable development.While effectively enhancing WC necessitates a comprehensive understanding of its driving factors and corresponding intervention strategies,existing studies have largely neglected the spatiotemporal heterogeneity of both natural and socio-economic drivers.Therefore,this study explored the spatiotemporal heterogeneity of WC drivers in YRS using multi-scale geographically weighted regression(MGWR)and geographically and temporally weighted regression(GTWR)models from an eco-hydrological perspective.We discovered that downstream regions,which are more developed,achieved significantly better WC than upstream regions.The results also demonstrated that the influence of temperature and wind speed is consistently dominant and temporally stable due to climate stability,while the influence of vegetation shifted from negative to positive around 2010,likely indicating greater benefits from understory vegetation.Economic growth positively impacted WC in upstream regions but had a negative effect in the more developed downstream regions.These findings highlight the importance of targeted water conservation strategies,including locally appropriate revegetation,optimization of agricultural and economic structures,and the establishment of eco-compensation mechanisms for ecological conservation and sustainable development.
基金supported by the National Key Research and Development Program of China(2022YFD1300202)Collection,Utilization,and Innovation of Animal Resources by Research Institutes and Enterprises of Chongqing(Cqnyncw-kqlhtxm),Chongqing Modern Agricultural Industry Technology System(CQMAITS202413)National Training Program of Innovation and Entrepreneurship for Undergraduates(S202310635040)。
文摘The genetic regulation of hair density in animals remains poorly understood.The Dazu black goat,characterized by its black coarse hair and white skin,provides a unique model for dissecting coarse hair density(CHD).Using high-resolution micro-camera imaging,this study analyzed 905 skin images,33 skin transcriptomes,272 whole-genome sequences,and 182 downloaded transcriptomes.Morphological assessment from juvenile to adult stages revealed the thickening of hair shafts accompanied by a progressive decline in density,largely attributable to rapid surface expansion of the trunk skin.Transcriptomic comparison between high-and low-CHD individuals identified 572 differentially expressed genes(DEGs).A genome-wide association study detected 25 significant single nucleotide polymorphisms(P<9.07e-8)and mapped 48 annotated genes,with the most prominent association signal located near GJA1 on chr9.15931585-18621011.Literature review and Venn analysis highlighted six genes(GJA1,GPRC5D,CD1D,CD207,TFAM,and CXCL12)with documented roles in skin and hair biology,and three genes(GJA1,GPRC5D,and ATP6V1B1)overlapped with DEGs.Multiple-tissue transcriptomic profiling,western blotting,immunohistochemical staining,and skin single-cell RNA sequencing confirmed that GJA1 and GPRC5D were highly and specifically expressed in skin,particularly within hair follicles.Expression was localized predominantly to follicular stem cells and dermal papilla cells,suggesting a significant role in folliculogenesis and structural maintenance.Cross-validation using four public datasets further demonstrated positive correlations between GJA1 and GPRC5D expression and hair follicle density.The innovative micro-camera application allowed the elucidation of spatiotemporal patterns and genes associated with CHD,thereby addressing a significant knowledge gap in animal hair density.
文摘Benzene,toluene,ethylbenzene,and xylene(BTEX)pollution poses a serious threat to public health and the environment because of its respiratory and neurological effects,carcinogenic properties,and adverse effects on air quality.BTEX exposure is a matter of grave concern in India owing to the growing vehicular and development activities,necessitating the assessment of atmospheric concentrations and their spatial variation.This paper presents a comprehensive assessment of ambient concentrations and spatiotemporal variations of BTEX in India.The study investigates the correlation of BTEX with other criteria pollutants andmeteorological parameters,aiming to identify interrelationships and diagnostic indicators for the source characterization of BTEX emissions.Additionally,the paper categorizes various regions in India according to the Air Quality Index(AQI)based on BTEX pollution levels.The results reveal that the northern zone of India exhibits the highest levels of BTEX pollution compared to central,eastern,and western regions.In contrast,the southern zone experiences the least pollution with BTEX.Seasonal analysis indicates that winter and postmonsoon periods,characterized by lower temperatures,are associated with higher BTEX levels due to the accumulation of localized emissions.When comparing the different zones in India,high traffic emissions and localized activities,such as solvent use and solvent evaporation,are found to be the primary sources of BTEX.The findings of the current study aid in source characterization and identification,and better understanding of the region’s air quality problems,which helps in the development of focused BTEX pollution reduction and control strategies.
基金National Natural Science Foundation of China,No.42371103Natural Science Basic Research Plan in Shaanxi Province of China,No.2023-JC-YB-229。
文摘Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.
基金Medical Research Ethics Review Committee of the Guangdong Provincial Center for Disease Control and Prevention,China(No.W96-027E-202307).
文摘Objective This study aimed to identify high-risk areas for type 2 diabetes mellitus(T2DM)mortality to provide relevant evidence for interventions in emerging economies.Methods Empirical Bayesian Kriging and a discrete Poisson space-time scan statistic were applied to identify the spatiotemporal clusters of T2DM mortality.The relationships between economic factors,air pollutants,and the mortality risk of T2DM were assessed using regression analysis and the Poisson Log-linear Model.Results A coastal district in East Guangdong,China,had the highest risk(Relative Risk[RR]=4.58,P<0.01),followed by the 10 coastal districts/counties in West Guangdong,China(RR=2.88,P<0.01).The coastal county in the Pearl River Delta,China(RR=2.24,P<0.01),had the third-highest risk.The remaining risk areas were two coastal counties in East Guangdong,16 districts/counties in the Pearl River Delta,and two counties in North Guangdong,China.Mortality due to T2DM was associated with gross domestic product per capita(GDP per capita).In pilot assessments,T2DM mortality was significantly associated with carbon monoxide.Conclusion High mortality from T2DM occurred in the coastal areas of East and West Guangdong,especially where the economy was progressing towards the upper middle-income level.
基金financially supported by the Second Tibetan Plateau Scientific Expedition and Research Program of China(Grant No.2019QZKK0905)the Youth Fund of Shanxi Provincial Science and Technology Department of China(GrantNo.202103021223200)the Natural Science Foundation of Shaanxi Province,China(Grant No.2024JC-YBMS-314).
文摘The shear behavior of intact loess is intricately linked to the spatiotemporal evolution of its mesoscopic characteristics.Understanding this relationship is crucial for comprehending and preventing loess landslides.To systematically investigate this connection,our study conducted triaxial shear tests on both Malan loess and Lishi loess,encompassing variations in confining pressures.Additionally,nondestructive,real-time CT observations were employed to track the dynamic evolution of loess mesostructures.The experimental findings illuminate significant insights.The Malan loess exhibits strain hardening during shearing,with the degree of hardening exhibiting an increase in tandem with rising confining pressure.Conversely,the Lishi loess manifests a transition from strain softening to strain hardening as confining pressure increases.Under elevated confining pressure,the specimen undergoes structural damage while concurrently forming a denser configuration through particle friction and rearrangement,leading to strain hardening and volume reduction.In contrast,the central portion of the specimen exhibits heightened sensitivity to deformation under low confining pressures.Gradual crack expansion,emanating from the center and progressing towards the ends,results in progressive specimen destruction and a concomitant reduction in stress.On a macroscopic level,the specimen undergoes expansion at its center while contracting at its ends.The findings of this study unveil the intricate mechanisms governing loess deformation in the presence of varying confining pressures,thereby contributing significantly to our understanding of loess landslide formation and providing a robust theoretical framework for preventive measures.
基金National Natural Science Foundation of China,No.41871025The Third Xinjiang Scientific Expedition Program,No.2022xjkk0100+1 种基金The Natural Science Foundation of Shanghai,No.24ZR1440400The Young Talent Development Program in the Humanities at Shanghai Jiao Tong University,No.2025QN034。
文摘A comprehensive understanding of vegetation responses to climate extremes is essential for predicting ecological risks.The Tianshan Mountains,the world's largest arid mountain system,are ecologically vulnerable to climate extremes,yet the spatiotemporal heterogeneity of vegetation responses is not well understood.To address this,we assessed changes in vegetation phenophases using the green-up date(GUD)and the monthly maximum vegetation index(MVI).Their relationship with climate extremes across seasons and geographic units was analyzed using Classification and Regression Tree and Principal Component Analysis.Results indicate that GUD advanced by 0.276 days/year,with MVI increasing in spring and decreasing in summer.On a yearly scale,nighttime heatwaves advanced GUD in all vegetation types at lower altitudes with higher snow cover,whereas daytime heatwaves delayed GUD in grasslands.On a monthly scale,early spring heatwaves generally benefitted vegetation,with positive effects decreasing from forests to grasslands:forests benefitted from March to May,forest-grassland from March to April,and grasslands only in March.By late summer,heatwaves were negatively correlated with MVI across all vegetation types.This study highlights the complex responses of vegetation to climate extremes and underscores the vulnerability of high-altitude,low snow-covered grasslands,which is crucial for guiding restoration efforts.
基金National Key Research and Development Program,No.2021xjkk0303。
文摘Drought significantly constrains vegetation growth and reduces terrestrial carbon sinks.Currently,the spatiotemporal patterns and mechanisms of the differential impacts of soil and meteorological droughts on vegetation productivity remain inadequately understood.In this study,we analyzed soil moisture(SM),vapor pressure deficit(VPD),and gross primary productivity(GPP)to investigate their spatiotemporal patterns and the combined effects on GPP over China.The results revealed that:(1)Soil drought and meteorological drought generally exhibited temporally synchronous trends across China.(2)GPP was predominantly affected by the combined and synchronous effects of both SM and VPD,although their effects displayed directional variability differences in certain regions.(3)SM demonstrated a greater relative importance on GPP than VPD across more than half of the regions in China,whereas deciduous broadleaf forests were the only vegetation type primarily affected by VPD.(4)Under the lag effects,both SM and VPD exhibited bidirectional Granger causality with GPP,with the interaction between VPD and GPP proving more pronounced than that of SM.Our research provides valuable insights into the mechanisms through which SM and VPD influence GPP,contributing to improved predictions vegetation productivity and implementing ecological restoration.
基金funded by the National Key R&D Program(2021YFC3200203,2023YFC3206303)the Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)National Natural Science Foundation of China(52394233,52122902).
文摘The impact of climate change on vegetation ecosystems is a prominent focus in global climate change research.The climate change affects vegetation growth and ecosystem stability in the upper reaches of the Yellow River(UYR).However,the spatiotemporal patterns and driving mechanisms of vegetation growth status(VGS)in the region remain poorly understood.Based on the hydrological model PLS,an innovative WEP-CHC model was developed by integrating regional environmental and vegetation growth characteristics.Furthermore,combined with the PLS-SEM model and other methods,this study systematically investigated the spatiotemporal patterns and driving mechanisms of VGS in the UYR.The results indicated that:①VGS exhibited significant spatiotemporal variation trends within the study area.In the study period of 1970–2020,the GPP onset time was significantly advanced(p<0.05)while the GPP peak value was significantly increased.Spatial analysis revealed significant spatial complexity in the GPP onset time and peak values across the region.②Soil freeze-thaw conditions significantly influenced VGS(p<0.05).The complete thawing time of permafrost was closely coincided with the GPP onset time,with a correlation coefficient exceeding 0.84.After controlling soil freeze-thaw effects using partial correlation analysis,it was found that better initial soil hydrothermal conditions would lead to better VGS;③The model constructed with annual hydrothermal conditions(AHC),soil freeze-thaw period(SFTP),vegetation growth season(VGS),initial soil hydrothermal conditions(ISHC),and annual solar radiation conditions(ASRC),demonstrated good explanatory power for vegetation growth.The R^(2)values of PLS-SEM were above 0.76 in all five subregions.However,their effects on VGS varied significantly across subregions.Overall,AHC and SFTP were the dominant factors in all subregions.Furthermore,the impacts of ISHC and VGC were statistically insignificant,whereas the effects of ASRC exhibited high complexity.This study not only provides new insights into the current state of hydrological-ecological coupling in the UYR but also offers a new tool for ecological conservation and sustainable water management in other cold regions and similar watersheds worldwide.
文摘The authors regret to report the following error made in“Spatiotemporal dynamics of neuron differentiation and migration in the developing human spinal cord;52(2025)-101283-1295;Doi:https://doi.org/10.1016/j.jgg.2025.08.004”.In Tables S1 and S2 in the supplementary materials of this paper,some items were written in Chinese.The corresponding pictures and tables were not uploaded in time.
基金Supported by the Natural Science Foundation of Fujian Province(No.2022J05278)the Marine and Fishery Development Special Fund of Xiamen(No.23YYST064QCB36)。
文摘Coastal ecosystems are plagued by high levels of microplastic pollution.Conducting baseline surveys is crucial to comprehend the distribution and influencing factors of this pollution.The present study investigates the spatiotemporal variation and diversity of microplastic on the coastal beaches in Xiamen City,China,considering the combined effects of seasons,human activities,and physicochemical properties of sediments.It is detected that the abundance of microplastics in Xiamen beaches was 0.271±0.01 items/g.The abundance of microplastics in dry season was significantly higher than in rainy season.In terms of spatial variation,the beaches that attracted a larger number of tourists exhibited significantly higher microplastic abundance.The temporal pattern of microplastic distribution on different beaches varied greatly due to region-specific human activities(e.g.,mangrove restoration project)and sedimentary properties(e.g.,bulk density).When the assemblage of microplastics in the coastal area was viewed as a biological community,the Shannon-Wiener index and Pielou's index were higher in rainy season and in the beaches with high intensity of tourist activities,which suggests that the human activities and the surface runoff may contribute to the diversity of microplastics on coastal beaches.Future investigations are encouraged to combine controlled experiments and long-term monitoring at multiple scales to elucidate the underlying mechanisms and factors associated with microplastic pollution in coastal zone.
基金funded by the National Science and Technology Major Project under Grant No.2024ZD0532000 and Grant No.2024ZD0532002the National Natural Science Foundation of China under Grant No.62173318+2 种基金the Shenzhen Basic Research Program under Grant No.JCYJ20250604182831042the Key Laboratory of Biomedical Imaging Science and System,Chinese Academy of Sciencesthe Alliance of International Science Organization(ANSO)under Grant No.2021A8017729010.
文摘Diabetes imposes a substantial burden on global healthcare systems.Worldwide,nearly half of individuals with diabetes remain undiagnosed,while conventional diagnostic techniques are often invasive,painful,and expensive.In this study,we propose a noninvasive approach for diabetes detection using photoplethysmography(PPG),which is widely integrated into modern wearable devices.First,we derived velocity plethysmography(VPG)and acceleration plethysmography(APG)signals from PPG to construct multi-channel waveform representations.Second,we introduced a novel multiset spatiotemporal feature fusion framework that integrates hand-crafted temporal,statistical,and nonlinear features with recursive feature elimination and deep feature extraction using a one-dimensional statistical convolutional neural network(1DSCNN).Finally,we developed an interpretable diabetes detection method based on XGBoost,with explainable artificial intelligence(XAI)techniques.Specifically,SHapley Additive exPlanations(SHAP)and Local InterpretableModel-agnostic Explanations(LIME)were employed to identify and interpret potential digital biomarkers associated with diabetes.To validate the proposed method,we extended the publicly available Guilin People’s Hospital dataset by incorporating in-house clinical data from ten subjects,thereby enhancing data diversity.A subject-independent cross-validation strategy was applied to ensure that the testing subjects remained independent of the training data for robust generalization.Compared with existing state-of-the-art methods,our approach achieved superior performance,with an area under the curve(AUC)of 80.5±15.9%,sensitivity of 77.2±7.5%,and specificity of 64.3±18.2%.These results demonstrate that the proposed approach provides a noninvasive,interpretable,and accessible solution for diabetes detection using PPG signals.