Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex a...Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.展开更多
The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-tempora...The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.展开更多
Periodic marketing is a unique and imporant socio-economic feature of Chinese ruraltowns, the economic, political, social and cultural centres in rural areas. Through two detailed casestudies in the North China Plain...Periodic marketing is a unique and imporant socio-economic feature of Chinese ruraltowns, the economic, political, social and cultural centres in rural areas. Through two detailed casestudies in the North China Plain in 1990, mis paper examined the temporal and spatialcharacteristics, especially their interrelationship. of regional periodic market systems and theirrelationship with rural development in modern China. The distribution of periodic market-towns isfound to be on consumer convenience, and to have an apparent hierarchical structure and centralplace characteristics. Further, the spatial coordination system of periodic marketing has a reverserelationship of spatio-temporal synchronisation. Finally, this paper notes that periodic marketingimposes significant influence on rural development through conducting and controlling goods flow and population flow in rural economic system.展开更多
This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include...This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include SARS cases,climate data,hospitalization records,and COVID-19 vaccination information,our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset.The analysis reveals significant variations in the incidence of SARS cases over time,particularly during and between the distinct eras of pre-COVID-19,during,and post-COVID-19.Our modeling approach accommodates explanatory variables such as humidity,temperature,and COVID-19 vaccine doses,providing a comprehensive understanding of the factors influencing SARS dynamics.Our modeling revealed unique temporal trends in SARS cases for each region,resembling neighborhood patterns.Low temperature and high humidity were linked to decreased cases,while in the COVID-19 era,temperature and vaccination coverage played significant roles.The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil,offering a foundation for targeted public health interventions and preparedness strategies.展开更多
Spatio-temporal data analysis is an emerging research area due to the development and application ofnovel computational techniques allowing for the analysis of large spatiotemporal databases.We consider a general clas...Spatio-temporal data analysis is an emerging research area due to the development and application ofnovel computational techniques allowing for the analysis of large spatiotemporal databases.We consider a general class of spatio-temporal linear models,where the number of structural breaks can tend to infinity.A procedure for simultaneously detecting all the change points is developed rigorously via the construction of adaptive group lasso penalty.Consistency of the multiple change point estimation is established under mild technical conditions even when the true number of change points sn diverges with the series length n.The adaptive group lasso can be substituted by the group lasso and other non-convex group selection penalty functions such as group SCAD or group MCP.The simulation studies demonstrate that our procedure is stable and accurate.Two empirical examples from property market,including the housing transaction price in Baton Rouge and the commodity apartment price in Hong Kong,are analyzed to fully illustrate the proposed methodology.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB ...Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.展开更多
Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tan...Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.展开更多
Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently...Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.展开更多
Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are st...Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LM...Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.展开更多
Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over t...Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.展开更多
Land use and its dynamics have attracted considerable scientific attention for their significant ecological and socioeconomic implications.Many studies have investigated the past changes in land use,but efforts explor...Land use and its dynamics have attracted considerable scientific attention for their significant ecological and socioeconomic implications.Many studies have investigated the past changes in land use,but efforts exploring the potential changes in land use and implications under future scenarios are still lacking.Here we simulate the future land use changes and their impacts on ecosystem services in Northeast China(NEC) over the period of 2000–2050 using the CLUE–S(Conversion of Land Use and its Effects at Small regional extent) model under the scenarios of ecological security(ESS),food security(FSS) and comprehensive development(CDS).The model was validated against remote sensing data in 2005.Overall,the accuracy of the CLUE–S model was evaluated at 82.5%.Obtained results show that future cropland changes mainly occur in the Songnen Plain and the Liaohe Plain,forest and grassland changes are concentrated in the southern Lesser Khingan Mountains and the western Changbai Mountains,while the Sanjiang Plain will witness major changes of the wetlands.Our results also show that even though CDS is defined based on the goals of the regional development plan,the ecological service value(ESV) under CDS is RMB 2656.18 billion in 2050.The ESV of CDS is lower compared with the other scenarios.Thus,CDS is not an optimum scenario for eco-environmental protection,especially for the wetlands,which should be given higher priority for future development.The issue of coordination is also critical in future development.The results can help to assist structural adjustments for agriculture and to guide policy interventions in NEC.展开更多
According to calculation results of ocean chlorophyll concentration based on SeaWiFS data by SeaBAM model and synchronous ship-measured data, this research set up an improved model for CaseⅠand CaseⅡwater bodies...According to calculation results of ocean chlorophyll concentration based on SeaWiFS data by SeaBAM model and synchronous ship-measured data, this research set up an improved model for CaseⅠand CaseⅡwater bodies respectively. The monthly chlorophyll distribution in the East China Sea in 1998 was obtained from this improved model on calculation results of SeaBAM. The euphotic depth distribution in 1998 in the East China Sea is calculated by using remote sensing data of K 490 from SeaWiFS according to the relation between the euphotic depth and the oceanic diffuse attenuation coefficient. With data of ocean chlorophyll concentration, euphotic depth, ocean surface photosynthetic available radiation (PAR), daily photoperiod and optimal rate of daily carbon fixation within a water column, the monthly and annual primary productivity spatio-temporal distributions in the East China Sea in 1998 were obtained based on VGPM model. Based on analysis of those distributions, the conclusion can be drawn that there is a clear bimodality character of primary productivity in the monthly distribution in the East China Sea. In detail, the monthly distribution of primary productivity stays the lowest level in winter and rises rapidly to the peak in spring. It gets down a little in summer, and gets up a little in autumn. The daily average of primary productivity in the whole East China Sea is 560.03 mg/m 2 /d, which is far higher than the average of subtropical ocean areas. The annual average of primary productivity is 236.95 g/m 2 /a. The research on the seasonal variety mechanism of primary productivity shows that several factors that affect the spatio-temporal distribution may include the chlorophyll concentration distribution, temperature condition, the Yangtze River diluted water variety, the euphotic depth, ocean current variety, etc. But the main influencing factors may be different in each local sea area.展开更多
This paper deals mainly with the existence and asymptotic behavior of traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal based on Schauder’s fixed-point theorem and analysis techniques,...This paper deals mainly with the existence and asymptotic behavior of traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal based on Schauder’s fixed-point theorem and analysis techniques,which generalize the results of nonlocal SIRH models without relapse and delay.In particular,the difficulty of obtaining the asymptotic behavior of traveling waves for the appearance of spatio-temporal delay is overcome by the use of integral techniques and analysis techniques.Finally,the more general nonexistence result of traveling waves is also included.展开更多
Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a ...Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.展开更多
Background Urbanization greatly afects the natural and social environment of human existence and may have a multifactoral impact on parasitic diseases.Schistosomiasis,a common parasitic disease transmitted by the snai...Background Urbanization greatly afects the natural and social environment of human existence and may have a multifactoral impact on parasitic diseases.Schistosomiasis,a common parasitic disease transmitted by the snail Oncomelania hupensis,is mainly found in areas with population aggregations along rivers and lakes where snails live.Previous studies have suggested that factors related to urbanization may infuence the infection risk of schistosomiasis,but this association remains unclear.This study aimed to analyse the efect of urbanization on schistosomiasis infection risk from a spatial and temporal perspective in the endemic areas along the Yangtze River Basin in China.Methods County-level schistosomiasis surveillance data and natural environmental factor data covering the whole Anhui Province were collected.The urbanization level was characterized based on night-time light data from the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)and the National Polar-Orbiting Partnership’s Visible Infrared Imaging Radiometer Suite(NPP-VIIRS).The geographically and temporally weighted regression model(GTWR)was used to quantify the infuence of urbanization on schistosomiasis infection risk with the other potential risk factors controlled.The regression coefcient of urbanization was tested for signifcance(α=0.05),and the infuence of urbanization on schistosomiasis infection risk was analysed over time and across space based on signifcant regression coefcients.Variables studied included climate,soil,vegetation,hydrology and topography.Results The mean regression coefcient for urbanization(0.167)is second only to the leached soil area(0.300),which shows that the urbanization is the most important infuence factors for schistosomiasis infection risk besides leached soil area.The other important variables are distance to the nearest water source(0.165),mean minimum temperature(0.130),broadleaf forest area(0.105),amount of precipitation(0.073),surface temperature(0.066),soil bulk density(0.037)and grassland area(0.031).The infuence of urbanization on schistosomiasis infection risk showed a decreasing trend year by year.During the study period,the signifcant coefcient of urbanization level increased from−0.205 to−0.131.Conclusions The infuence of urbanization on schistosomiasis infection has spatio-temporal heterogeneous.The urbanization does reduce the risk of schistosomiasis infection to some extend,but the strength of this infuence decreases with increasing urbanization.Additionally,the efect of urbanization on schistosomiasis infection risk was greater than previous reported natural environmental factors.This study provides scientifc basis for understanding the infuence of urbanization on schistosomiasis,and also provides the feasible research methods for other similar studies to answer the issue about the impact of urbanization on disease risk.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
In the process of logistics distribution of manufacturing enterprises, the automatic scheduling method based on the algorithm model has the advantages of accurate calculation and stable operation, but it excessively r...In the process of logistics distribution of manufacturing enterprises, the automatic scheduling method based on the algorithm model has the advantages of accurate calculation and stable operation, but it excessively relies on the results of data calculation, ignores historical information and empirical data in the solving process, and has the bottleneck of low processing dimension and small processing scale. Therefore, in the digital twin(DT) system based on virtual and real fusion, a modeling and analysis method of production logistics spatio-temporal graph network model is proposed, considering the characteristics of road network topology and time-varying data. In the DT system, the temporal graph network model of the production logistics task is established and combined with the network topology, and the historical scheduling information about logistics elements is stored in the nodes. When the dynamic task arrives, a multi-stage links probability prediction method is adopted to predict the possibility of loading, driving, and other link relationships between task-related entity nodes at each stage. Several experiments are carried out, and the prediction accuracy of the digital twin-based temporal graph network(DTGN) model trained by historical scheduling information reaches 99.2% when the appropriate batch size is selected. Through logistics simulation experiments, the feasibility and the effectiveness of production logistics spatio-temporal graph network analysis methods based on historical scheduling information are verified.展开更多
文摘Spatio-temporal models are valuable tools for disease mapping and understanding the geographical distribution of diseases and temporal dynamics. Spatio-temporal models have been proven empirically to be very complex and this complexity has led many to oversimply and model the spatial and temporal dependencies independently. Unlike common practice, this study formulated a new spatio-temporal model in a Bayesian hierarchical framework that accounts for spatial and temporal dependencies jointly. The spatial and temporal dependencies were dynamically modelled via the matern exponential covariance function. The temporal aspect was captured by the parameters of the exponential with a first-order autoregressive structure. Inferences about the parameters were obtained via Markov Chain Monte Carlo (MCMC) techniques and the spatio-temporal maps were obtained by mapping stable posterior means from the specific location and time from the best model that includes the significant risk factors. The model formulated was fitted to both simulation data and Kenya meningitis incidence data from 2013 to 2019 along with two covariates;Gross County Product (GCP) and average rainfall. The study found that both average rainfall and GCP had a significant positive association with meningitis occurrence. Also, regarding geographical distribution, the spatio-temporal maps showed that meningitis is not evenly distributed across the country as some counties reported a high number of cases compared with other counties.
文摘The development of spatio-temporal data model is introduced. According to the soil characteristic of reclamation land, we adopt the base state with amendments model of multi-layer raster to organize the spatio-temporal data, using the combined data structure on linear quadtree and linear octree to code. The advantage of this model is that it can easily obtain the information of certain layer and integratedly analyze the data with other methods. Then, the methods of obtain and analyses are introduced. The method can provide a tool for the research of the soil characteristic change and spatial distribution in reclamation land.
文摘Periodic marketing is a unique and imporant socio-economic feature of Chinese ruraltowns, the economic, political, social and cultural centres in rural areas. Through two detailed casestudies in the North China Plain in 1990, mis paper examined the temporal and spatialcharacteristics, especially their interrelationship. of regional periodic market systems and theirrelationship with rural development in modern China. The distribution of periodic market-towns isfound to be on consumer convenience, and to have an apparent hierarchical structure and centralplace characteristics. Further, the spatial coordination system of periodic marketing has a reverserelationship of spatio-temporal synchronisation. Finally, this paper notes that periodic marketingimposes significant influence on rural development through conducting and controlling goods flow and population flow in rural economic system.
文摘This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome(SARS)across the diverse health regions of Brazil from 2016 to 2024.Leveraging extensive datasets that include SARS cases,climate data,hospitalization records,and COVID-19 vaccination information,our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset.The analysis reveals significant variations in the incidence of SARS cases over time,particularly during and between the distinct eras of pre-COVID-19,during,and post-COVID-19.Our modeling approach accommodates explanatory variables such as humidity,temperature,and COVID-19 vaccine doses,providing a comprehensive understanding of the factors influencing SARS dynamics.Our modeling revealed unique temporal trends in SARS cases for each region,resembling neighborhood patterns.Low temperature and high humidity were linked to decreased cases,while in the COVID-19 era,temperature and vaccination coverage played significant roles.The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil,offering a foundation for targeted public health interventions and preparedness strategies.
基金National Natural Science Foundation of China(General Program,No.11571337,71873128,Key Program,No.71631006)Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2017-05720)。
文摘Spatio-temporal data analysis is an emerging research area due to the development and application ofnovel computational techniques allowing for the analysis of large spatiotemporal databases.We consider a general class of spatio-temporal linear models,where the number of structural breaks can tend to infinity.A procedure for simultaneously detecting all the change points is developed rigorously via the construction of adaptive group lasso penalty.Consistency of the multiple change point estimation is established under mild technical conditions even when the true number of change points sn diverges with the series length n.The adaptive group lasso can be substituted by the group lasso and other non-convex group selection penalty functions such as group SCAD or group MCP.The simulation studies demonstrate that our procedure is stable and accurate.Two empirical examples from property market,including the housing transaction price in Baton Rouge and the commodity apartment price in Hong Kong,are analyzed to fully illustrate the proposed methodology.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
基金supported by the Guangdong Provincial Clinical Research Center for Tuberculosis(No.2020B1111170014)。
文摘Objective To investigate the spatiotemporal patterns and socioeconomic factors influencing the incidence of tuberculosis(TB)in the Guangdong Province between 2010 and 2019.Method Spatial and temporal variations in TB incidence were mapped using heat maps and hierarchical clustering.Socioenvironmental influencing factors were evaluated using a Bayesian spatiotemporal conditional autoregressive(ST-CAR)model.Results Annual incidence of TB in Guangdong decreased from 91.85/100,000 in 2010 to 53.06/100,000in 2019.Spatial hotspots were found in northeastern Guangdong,particularly in Heyuan,Shanwei,and Shantou,while Shenzhen,Dongguan,and Foshan had the lowest rates in the Pearl River Delta.The STCAR model showed that the TB risk was lower with higher per capita Gross Domestic Product(GDP)[Relative Risk(RR),0.91;95%Confidence Interval(CI):0.86–0.98],more the ratio of licensed physicians and physician(RR,0.94;95%CI:0.90-0.98),and higher per capita public expenditure(RR,0.94;95%CI:0.90–0.97),with a marginal effect of population density(RR,0.86;95%CI:0.86–1.00).Conclusion The incidence of TB in Guangdong varies spatially and temporally.Areas with poor economic conditions and insufficient healthcare resources are at an increased risk of TB infection.Strategies focusing on equitable health resource distribution and economic development are the key to TB control.
基金supported by National Natural Science of Foundation of China(No.10871026)
文摘Shallow earthquakes usually show obvious spatio-temporal clustering patterns. In this study, several spatio-temporal point process models are applied to investigate the clustering characteristics of the well-known Tangshan sequence based on classical empirical laws and a few assumptions. The relative fit of competing models is compared by Akalke Information Criterion. The spatial clustering pattern is well characterized by the model which gives the best fit to the data. A simulated aftershock sequence is generated by thinning algorithm and compared with the real seismicity.
基金supported by the National Key Basic Research and Development Program of China under contract No.2006CB701305the National Natural Science Foundation of China under coutract No.40571129the National High-Technology Program of China under contract Nos 2002AA639400,2003AA604040 and 2003AA637030.
文摘Marine information has been increasing quickly. The traditional database technologies have disadvantages in manipulating large amounts of marine information which relates to the position in 3-D with the time. Recently, greater emphasis has been placed on GIS (geographical information system)to deal with the marine information. The GIS has shown great success for terrestrial applications in the last decades, but its use in marine fields has been far more restricted. One of the main reasons is that most of the GIS systems or their data models are designed for land applications. They cannot do well with the nature of the marine environment and for the marine information. And this becomes a fundamental challenge to the traditional GIS and its data structure. This work designed a data model, the raster-based spatio-temporal hierarchical data model (RSHDM), for the marine information system, or for the knowledge discovery fi'om spatio-temporal data, which bases itself on the nature of the marine data and overcomes the shortages of the current spatio-temporal models when they are used in the field. As an experiment, the marine fishery data warehouse (FDW) for marine fishery management was set up, which was based on the RSHDM. The experiment proved that the RSHDM can do well with the data and can extract easily the aggregations that the management needs at different levels.
基金Foundation: National Natural Science Foundation of China, No.41171328, No.41201184, No.41101537 National Basic Program of China, No.2010CB951502
文摘Understanding crop patterns and their changes on regional scale is a critical re- quirement for projecting agro-ecosystem dynamics. However, tools and methods for mapping the distribution of crop area and yield are still lacking. Based on the cross-entropy theory, a spatial production allocation model (SPAM) has been developed for presenting spa- tio-temporal dynamics of maize cropping system in Northeast China during 1980-2010. The simulated results indicated that (1) maize sown area expanded northwards to 48~N before 2000, after that the increased sown area mainly occurred in the central and southern parts of Northeast China. Meanwhile, maize also expanded eastwards to 127°E and lower elevation (less than 100 m) as well as higher elevation (mainly distributed between 200 m and 350 m); (2) maize yield has been greatly promoted for most planted area of Northeast China, espe- cially in the planted zone between 42°N and 48°N, while the yield increase was relatively homogeneous without obvious longitudinal variations for whole region; (3) maize planting density increased gradually to a moderately high level over the investigated period, which reflected the trend of aggregation of maize cultivation driven by market demand.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
基金National Natural Science Foundation of China,No.42161006Yunnan Fundamental Research Projects No.202201AT070094,No.202301BF070001-004+1 种基金Special Project for High-level Talents of Yunnan Province for Young Top Talents,No.C6213001159European Research Council(ERC)Starting-Grant STORIES,No.101040939。
文摘Due to water conflicts and allocation in the Lancang-Mekong River Basin(LMRB),the spatio-temporal differentiation of total water resources and the natural-human influence need to be clarified.This work investigated LMRB's terrestrial water storage anomaly(TWSA)and its spatio-temporal dynamics during 2002–2020.Considering the effects of natural factors and human activities,the respective contributions of climate variability and human activities to terrestrial water storage change(TWSC)were separated.Results showed that:(1)LMRB's TWSA decreased by 0.3158 cm/a.(2)TWSA showed a gradual increase in distribution from southwest of MRB to middle LMRB and from northeast of LRB to middle LMRB.TWSA positively changed in Myanmar while slightly changed in Laos and China.It negatively changed in Vietnam,Thailand and Cambodia.(3)TWSA components decreased in a descending order of soil moisture,groundwater and precipitation.(4)Natural factors had a substantial and spatial differentiated influence on TWSA over the LMRB.(5)Climate variability contributed 79%of TWSC in the LMRB while human activities contributed 21%with an increasing impact after 2008.The TWSC of upstream basin countries was found to be controlled by climate variability while Vietnam and Cambodia's TWSC has been controlled by human activities since 2012.
基金supported and financed by the National Basic Research Program of China(973 Program,2010CB951504)the National Natural Science Foundation of China(41201089 and 41271112)
文摘Rice is one of the most important grain crops in Northeast China (NEC) and its cultivation is sensitive to climate change. This study aimed to explore the spatio-temporal changes in the NEC rice planting area over the period of 1980-2010 and to analyze their relationship to climate change. To do so, the CLUE-S (conversion of land use and its effects at small region extent) model was ifrst updated and used to simulate dynamic changes in the rice planting area in NEC to understand spatio-temporal change trends during three periods: 1980-1990, 1990-2000 and 2000-2010. The changing results in individual periods were then linked to climatic variables to investigate the climatic drivers of these changes. Results showed that the NEC rice planting area expanded quickly and increased by nearly 4.5 times during 1980-2010. The concentration of newly planted rice areas in NEC constantly moved northward and the changes were strongly dependent on latitude. This conifrmed that climate change, increases in temperature in particular, greatly inlfuenced the shift in the rice planting area. The shift in the north limit of the NEC rice planting area generally followed a 1°C isoline migration pattern, but with an obvious time-lag effect. These ifndings can help policy makers and crop producers take proper adaptation measures even when exposed to the global warming situation in NEC.
基金Agricultural Outstanding Talents Research Foundation of Ministry of Agriculture(MOA)Key Laboratory of Agri–Informatics Foundation of MOA No.2015001+1 种基金Natural Science Foundation of Hubei Province No.2016CFB558The Fundamental Research Funds for the Central Universities,No.CCNU15A05058
文摘Land use and its dynamics have attracted considerable scientific attention for their significant ecological and socioeconomic implications.Many studies have investigated the past changes in land use,but efforts exploring the potential changes in land use and implications under future scenarios are still lacking.Here we simulate the future land use changes and their impacts on ecosystem services in Northeast China(NEC) over the period of 2000–2050 using the CLUE–S(Conversion of Land Use and its Effects at Small regional extent) model under the scenarios of ecological security(ESS),food security(FSS) and comprehensive development(CDS).The model was validated against remote sensing data in 2005.Overall,the accuracy of the CLUE–S model was evaluated at 82.5%.Obtained results show that future cropland changes mainly occur in the Songnen Plain and the Liaohe Plain,forest and grassland changes are concentrated in the southern Lesser Khingan Mountains and the western Changbai Mountains,while the Sanjiang Plain will witness major changes of the wetlands.Our results also show that even though CDS is defined based on the goals of the regional development plan,the ecological service value(ESV) under CDS is RMB 2656.18 billion in 2050.The ESV of CDS is lower compared with the other scenarios.Thus,CDS is not an optimum scenario for eco-environmental protection,especially for the wetlands,which should be given higher priority for future development.The issue of coordination is also critical in future development.The results can help to assist structural adjustments for agriculture and to guide policy interventions in NEC.
基金The Key National Project for the Ninth Five-Year PlanNo.HY126-06-04-04
文摘According to calculation results of ocean chlorophyll concentration based on SeaWiFS data by SeaBAM model and synchronous ship-measured data, this research set up an improved model for CaseⅠand CaseⅡwater bodies respectively. The monthly chlorophyll distribution in the East China Sea in 1998 was obtained from this improved model on calculation results of SeaBAM. The euphotic depth distribution in 1998 in the East China Sea is calculated by using remote sensing data of K 490 from SeaWiFS according to the relation between the euphotic depth and the oceanic diffuse attenuation coefficient. With data of ocean chlorophyll concentration, euphotic depth, ocean surface photosynthetic available radiation (PAR), daily photoperiod and optimal rate of daily carbon fixation within a water column, the monthly and annual primary productivity spatio-temporal distributions in the East China Sea in 1998 were obtained based on VGPM model. Based on analysis of those distributions, the conclusion can be drawn that there is a clear bimodality character of primary productivity in the monthly distribution in the East China Sea. In detail, the monthly distribution of primary productivity stays the lowest level in winter and rises rapidly to the peak in spring. It gets down a little in summer, and gets up a little in autumn. The daily average of primary productivity in the whole East China Sea is 560.03 mg/m 2 /d, which is far higher than the average of subtropical ocean areas. The annual average of primary productivity is 236.95 g/m 2 /a. The research on the seasonal variety mechanism of primary productivity shows that several factors that affect the spatio-temporal distribution may include the chlorophyll concentration distribution, temperature condition, the Yangtze River diluted water variety, the euphotic depth, ocean current variety, etc. But the main influencing factors may be different in each local sea area.
基金supported by the NSF of China(11761046)Science and Technology Plan Foundation of Gansu Province of China(20JR5RA411)Foundation of A Hundred Youth Talents Training Program of Lanzhou Jiaotong University。
文摘This paper deals mainly with the existence and asymptotic behavior of traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal based on Schauder’s fixed-point theorem and analysis techniques,which generalize the results of nonlocal SIRH models without relapse and delay.In particular,the difficulty of obtaining the asymptotic behavior of traveling waves for the appearance of spatio-temporal delay is overcome by the use of integral techniques and analysis techniques.Finally,the more general nonexistence result of traveling waves is also included.
文摘Based on the theoretical expression of the three-dimension rheologic inclusion model, we analyze in detail the spatio-temporal changes on the ground of the bulk-strain produced by a spherical rheologic inclusion in a semi-infinite rheologic medium. The results show that the spatio-temporal change of bulk-strain produced by the hard inclusion has three stages of different characteristics, which are similar to most of those geodetic deformation curves, but those by a soft inclusion do not. The α-stage is a long stage in which the precursors in both the near source region and the far field develop from the focal region to the periphery. The β-stage indicates a very rapid propagation of the precursors, so that they almost appear everywhere. During the γ-stage, the precursors in the far-field converge from the periphery, and the precursors in the near source region develop outwards. The theoretical results have been used to explain tentatively the stage characteristics of the spatio-temporal change of earthquake precursors.
基金supported by the National Natural Science Foundation of China(81973102)Autonomous and Controllable Special Project for Surveying and Mapping of China(Grant No.816-517).
文摘Background Urbanization greatly afects the natural and social environment of human existence and may have a multifactoral impact on parasitic diseases.Schistosomiasis,a common parasitic disease transmitted by the snail Oncomelania hupensis,is mainly found in areas with population aggregations along rivers and lakes where snails live.Previous studies have suggested that factors related to urbanization may infuence the infection risk of schistosomiasis,but this association remains unclear.This study aimed to analyse the efect of urbanization on schistosomiasis infection risk from a spatial and temporal perspective in the endemic areas along the Yangtze River Basin in China.Methods County-level schistosomiasis surveillance data and natural environmental factor data covering the whole Anhui Province were collected.The urbanization level was characterized based on night-time light data from the Defense Meteorological Satellite Program Operational Linescan System(DMSP-OLS)and the National Polar-Orbiting Partnership’s Visible Infrared Imaging Radiometer Suite(NPP-VIIRS).The geographically and temporally weighted regression model(GTWR)was used to quantify the infuence of urbanization on schistosomiasis infection risk with the other potential risk factors controlled.The regression coefcient of urbanization was tested for signifcance(α=0.05),and the infuence of urbanization on schistosomiasis infection risk was analysed over time and across space based on signifcant regression coefcients.Variables studied included climate,soil,vegetation,hydrology and topography.Results The mean regression coefcient for urbanization(0.167)is second only to the leached soil area(0.300),which shows that the urbanization is the most important infuence factors for schistosomiasis infection risk besides leached soil area.The other important variables are distance to the nearest water source(0.165),mean minimum temperature(0.130),broadleaf forest area(0.105),amount of precipitation(0.073),surface temperature(0.066),soil bulk density(0.037)and grassland area(0.031).The infuence of urbanization on schistosomiasis infection risk showed a decreasing trend year by year.During the study period,the signifcant coefcient of urbanization level increased from−0.205 to−0.131.Conclusions The infuence of urbanization on schistosomiasis infection has spatio-temporal heterogeneous.The urbanization does reduce the risk of schistosomiasis infection to some extend,but the strength of this infuence decreases with increasing urbanization.Additionally,the efect of urbanization on schistosomiasis infection risk was greater than previous reported natural environmental factors.This study provides scientifc basis for understanding the infuence of urbanization on schistosomiasis,and also provides the feasible research methods for other similar studies to answer the issue about the impact of urbanization on disease risk.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金National Key Research and Development Plan of China (No.2019YFB1706300)Shanghai Frontier Science Research Center for Modern Textiles (Donghua University),China。
文摘In the process of logistics distribution of manufacturing enterprises, the automatic scheduling method based on the algorithm model has the advantages of accurate calculation and stable operation, but it excessively relies on the results of data calculation, ignores historical information and empirical data in the solving process, and has the bottleneck of low processing dimension and small processing scale. Therefore, in the digital twin(DT) system based on virtual and real fusion, a modeling and analysis method of production logistics spatio-temporal graph network model is proposed, considering the characteristics of road network topology and time-varying data. In the DT system, the temporal graph network model of the production logistics task is established and combined with the network topology, and the historical scheduling information about logistics elements is stored in the nodes. When the dynamic task arrives, a multi-stage links probability prediction method is adopted to predict the possibility of loading, driving, and other link relationships between task-related entity nodes at each stage. Several experiments are carried out, and the prediction accuracy of the digital twin-based temporal graph network(DTGN) model trained by historical scheduling information reaches 99.2% when the appropriate batch size is selected. Through logistics simulation experiments, the feasibility and the effectiveness of production logistics spatio-temporal graph network analysis methods based on historical scheduling information are verified.