The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interactio...Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the externa...The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the external relationships of China's cities are experiencing the joint action of urban scale hierarchies and connection networks(“hierarchy-network”).However,under the interactive effect of the two,the mechanism of urban economic efficiency(UEE)is unclear.Therefore,based on Baidu migration data,the regionalization with dynamically constrained agglomerative clustering and partitioning(REDCAP)method,and a spatial simultaneous equation model,this paper analyzes the UEE spatial pattern and mechanism in China.The results indicate that:(1)the urban economy has a superlinear relationship with the population size.However,the benefit of this superlinear growth is in marginal decline.(2)The UEE shows a pattern of differentiation between China's eastern,then central,and then western region.Also,local differences are found within the three major sub-regions.(3)The increase of urban network centrality can promote UEE,while the impact of urban scale is negative.(4)There is regional heterogeneity of the interactive effect of“hierarchy-network”on UEE.This study reveals the influencing mechanism of UEE and also provides policy implications for the development of UEE.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emi...Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emission networks and driver patterns)and the mutual influence of gross domestic product(GDP)and GHG emissions remains limited at a global level in the 21st century,which is not conducive to forming a consensus in global climate change negotiations and formulating relevant policies.To fill these gaps,this study comprehensively analyzes the complex network and driver pattern of GHG emissions,as well as the corresponding mutual influence with GDP for 185 countries during 2000-2021,based on social network analysis,the logarithmic Divisia decomposition approach,and panel vector autoregression model at global and regional levels.The results indicate that significant heterogeneity and inequality exist in terms of GHG emissions among regions and countries in different geographical areas and economic income levels.Additionally,GDP per capita and GHG emission intensity are the largest positive and negative drivers,respectively,affecting the increase in global GHG emissions.Furthermore,key countries,such as Germany and Canada,that could serve as coordinating bridges to strengthen collaboration in the global emission network are identified.This study highlights the need to encourage key participants in the emission network and foster international cooperation in governance,energy technology,and economic investment to address climate change.展开更多
Software defect prediction aims to use measurement data of code and historical defects to predict potential problems,optimize testing resources and defect management.However,current methods face challenges:(1)Coarse-g...Software defect prediction aims to use measurement data of code and historical defects to predict potential problems,optimize testing resources and defect management.However,current methods face challenges:(1)Coarse-grained file level detection cannot accurately locate specific defects.(2)Fine-grained line-level defect prediction methods rely solely on local information of a single line of code,failing to deeply analyze the semantic context of the code line and ignoring the heuristic impact of line-level context on the code line,making it difficult to capture the interaction between global and local information.Therefore,this paper proposes a telecontext-enhanced recursive interactive attention fusion method for line-level defect prediction(TRIA-LineDP).Firstly,using a bidirectional hierarchical attention network to extract semantic features and contextual information from the original code lines as the basis.Then,the extracted contextual information is forwarded to the telecontext capture module to aggregate the global context,thereby enhancing the understanding of broader code dynamics.Finally,a recursive interaction model is used to simulate the interaction between code lines and line-level context,passing information layer by layer to enhance local and global information exchange,thereby achieving accurate defect localization.Experimental results from within-project defect prediction(WPDP)and cross-project defect prediction(CPDP)conducted on nine different projects(encompassing a total of 32 versions)demonstrated that,within the same project,the proposed methods will respectively recall at top 20%of lines of code(Recall@Top20%LOC)and effort at top 20%recall(Effort@Top20%Recall)has increased by 11%–52%and 23%–77%.In different projects,improvements of 9%–60%and 18%–77%have been achieved,which are superior to existing advanced methods and have good detection performance.展开更多
With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extract...With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.展开更多
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode...Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.展开更多
Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanne...Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.展开更多
In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this...In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.展开更多
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi...We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.展开更多
In industrial wireless networks,data transmitted from source to destination are highly repetitive.This often leads to the queuing of the data,and poor management of the queued data results in excessive delays,increase...In industrial wireless networks,data transmitted from source to destination are highly repetitive.This often leads to the queuing of the data,and poor management of the queued data results in excessive delays,increased energy consumption,and packet loss.Therefore,a nature-inspired-based Dragonfly Interaction Optimization Algorithm(DMOA)is proposed for optimization of the queue delay in industrial wireless networks.The term“interaction”herein used is the characterization of the“flying movement”of the dragonfly towards damselflies(female dragonflies)for mating.As a result,interaction is represented as the flow of transmitted data packets,or traffic,from the source to the base station.This includes each and every feature of dragonfly movement as well as awareness of the rival dragonflies,predators,and damselflies for the desired optimization of the queue delay.These features are juxtaposed as noise and interference,which are further used in the calculation of industrial wireless metrics:latency,error rate(reliability),throughput,energy efficiency,and fairness for the optimization of the queue delay.Statistical analysis,convergence analysis,the Wilcoxon test,the Friedman test,and the classical as well as the 2014 IEEE Congress of Evolutionary Computation(CEC)on the benchmark functions are also used for the evaluation of DMOA in terms of its robustness and efficiency.The results demonstrate the robustness of the proposed algorithm for both classical and benchmarking functions of the IEEE CEC 2014.Furthermore,the accuracy and efficacy of DMOA were demonstrated by means of the convergence rate,Wilcoxon testing,and ANOVA.Moreover,fairness using Jain’s index in queue delay optimization in terms of throughput and latency,along with computational complexity,is also evaluated and compared with other algorithms.Simulation results show that DMOA exceeds other bio-inspired optimization algorithms in terms of fairness in queue delay management and average packet loss.The proposed algorithm is also evaluated for the conflicting objectives at Pareto Front,and its analysis reveals that DMOA finds a compromising solution between the objectives,thereby optimizing queue delay.In addition,DMOA on the Pareto front delivers much greater performance when it comes to optimizing the queuing delay for industry wireless networks.展开更多
It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social ...It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social benefits of transportation services,and incorporated it into the comprehensive transportation efficiency evaluation framework as an expected output.Based on the panel data of 30 regions in China from 2003-2018,the CTGE in China was measured using the slacks-based measure-data envelopment analysis(SBM-DEA)model.Further,the dynamic evolution trends of CTGE were determined using the spatial Markov model and exploratory spatio-temporal data analysis(ESTDA)technique from a spatio-temporal perspective.The results showed that the CTGE shows a U-shaped change trend but with an overall low level and significant regional differences.The state transition of CTGE has a strong spatial dependence,and there exists the phenomenon of“club convergence”.Neighbourhood background has a significant impact on the CTGE transition types,and the spatial spillover effect is pronounced.The CTGE has an obvious positive correlation and spatial agglomeration characteristics.The geometric characteristics of the LISA time path show that the evolution process of local spatial structure and local spatial dependence of China’s CTGE is stable,but the integration of spatial evolution is weak.The spatio-temporal transition results of LISA indicate that the CTGE has obvious transfer inertness and has certain path-dependence and spatial locking characteristics,which will become the major difficulty in improving the CTGE.展开更多
E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that m...E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.展开更多
The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation sy...The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.展开更多
Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of th...Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.展开更多
Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence ...Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.展开更多
According to the disease module hypothesis,the cellular components associated with a disease segregate in the same neighborhood of the human interactome,the map of biologically relevant molecular interactions.Yet,give...According to the disease module hypothesis,the cellular components associated with a disease segregate in the same neighborhood of the human interactome,the map of biologically relevant molecular interactions.Yet,given the incompleteness of the interactome and the limited knowledge of disease-associated genes,it is not obvious if the available data have sufficient coverage to map out modules associated with each disease.展开更多
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金National Natural Science Foundation of China,No.42361040。
文摘Population migration data derived from location-based services has often been used to delineate population flows between cities or construct intercity relationship networks to reveal and explore the complex interaction patterns underlying human activities.Nevertheless,the inherent heterogeneity in multimodal migration big data has been ignored.This study conducts an in-depth comparison and quantitative analysis through a comprehensive lens of spatial association.Initially,the intercity interactive networks in China were constructed,utilizing migration data from Baidu and AutoNavi collected during the same time period.Subsequently,the characteristics and spatial structure similarities of the two types of intercity interactive networks were quantitatively assessed and analyzed from overall(network)and local(node)perspectives.Furthermore,the precision of these networks at the local scale is corroborated by constructing an intercity network from mobile phone(MP)data.Results indicate that the intercity interactive networks in China,as delineated by Baidu and AutoNavi migration flows,exhibit a high degree of structure equivalence.The correlation coefficient between these two networks is 0.874.Both networks exhibit a pronounced spatial polarization trend and hierarchical structure.This is evident in their distinct core and peripheral structures,as well as in the varying importance and influence of different nodes within the networks.Nevertheless,there are notable differences worthy of attention.Baidu intercity interactive network exhibits pronounced cross-regional effects,and its high-level interactions are characterized by a“rich-club”phenomenon.The AutoNavi intercity interactive network presents a more significant distance attenuation effect,and the high-level interactions display a gradient distribution pattern.Notably,there exists a substantial correlation between the AutoNavi and MP networks at the local scale,evidenced by a high correlation coefficient of 0.954.Furthermore,the“spatial dislocations”phenomenon was observed within the spatial structures at different levels,extracted from the Baidu and AutoNavi intercity networks.However,the measured results of network spatial structure similarity from three dimensions,namely,node location,node size,and local structure,indicate a relatively high similarity and consistency between the two networks.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
基金National Natural Science Foundation of China,No.42371222,No.41971167Fundamental Scientific Research Funds of Central China Normal University,No.CCNU24ZZ120,No.CCNU22JC026。
文摘The efficient development of the urban economy is a major concern of scholars in the fields of geography and urban science.In the context of globalization,informatization,industrialization,and urbanization,the external relationships of China's cities are experiencing the joint action of urban scale hierarchies and connection networks(“hierarchy-network”).However,under the interactive effect of the two,the mechanism of urban economic efficiency(UEE)is unclear.Therefore,based on Baidu migration data,the regionalization with dynamically constrained agglomerative clustering and partitioning(REDCAP)method,and a spatial simultaneous equation model,this paper analyzes the UEE spatial pattern and mechanism in China.The results indicate that:(1)the urban economy has a superlinear relationship with the population size.However,the benefit of this superlinear growth is in marginal decline.(2)The UEE shows a pattern of differentiation between China's eastern,then central,and then western region.Also,local differences are found within the three major sub-regions.(3)The increase of urban network centrality can promote UEE,while the impact of urban scale is negative.(4)There is regional heterogeneity of the interactive effect of“hierarchy-network”on UEE.This study reveals the influencing mechanism of UEE and also provides policy implications for the development of UEE.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
基金supported by the Humanities and Social Sciences Youth Foundation,Ministry of Education of China[Grant No.24YJC630248]Sichuan Office of Philosophy and Social Science,China[Grant No.SCJJ24ND299].
文摘Achieving a reduction in global greenhouse gas(GHG)emissions requires collaborative efforts from the international community;however,a comprehensive understanding of the spatiotemporal characteristics(i.e.,complex emission networks and driver patterns)and the mutual influence of gross domestic product(GDP)and GHG emissions remains limited at a global level in the 21st century,which is not conducive to forming a consensus in global climate change negotiations and formulating relevant policies.To fill these gaps,this study comprehensively analyzes the complex network and driver pattern of GHG emissions,as well as the corresponding mutual influence with GDP for 185 countries during 2000-2021,based on social network analysis,the logarithmic Divisia decomposition approach,and panel vector autoregression model at global and regional levels.The results indicate that significant heterogeneity and inequality exist in terms of GHG emissions among regions and countries in different geographical areas and economic income levels.Additionally,GDP per capita and GHG emission intensity are the largest positive and negative drivers,respectively,affecting the increase in global GHG emissions.Furthermore,key countries,such as Germany and Canada,that could serve as coordinating bridges to strengthen collaboration in the global emission network are identified.This study highlights the need to encourage key participants in the emission network and foster international cooperation in governance,energy technology,and economic investment to address climate change.
基金supported by National Natural Science Foundation of China(no.62376240).
文摘Software defect prediction aims to use measurement data of code and historical defects to predict potential problems,optimize testing resources and defect management.However,current methods face challenges:(1)Coarse-grained file level detection cannot accurately locate specific defects.(2)Fine-grained line-level defect prediction methods rely solely on local information of a single line of code,failing to deeply analyze the semantic context of the code line and ignoring the heuristic impact of line-level context on the code line,making it difficult to capture the interaction between global and local information.Therefore,this paper proposes a telecontext-enhanced recursive interactive attention fusion method for line-level defect prediction(TRIA-LineDP).Firstly,using a bidirectional hierarchical attention network to extract semantic features and contextual information from the original code lines as the basis.Then,the extracted contextual information is forwarded to the telecontext capture module to aggregate the global context,thereby enhancing the understanding of broader code dynamics.Finally,a recursive interaction model is used to simulate the interaction between code lines and line-level context,passing information layer by layer to enhance local and global information exchange,thereby achieving accurate defect localization.Experimental results from within-project defect prediction(WPDP)and cross-project defect prediction(CPDP)conducted on nine different projects(encompassing a total of 32 versions)demonstrated that,within the same project,the proposed methods will respectively recall at top 20%of lines of code(Recall@Top20%LOC)and effort at top 20%recall(Effort@Top20%Recall)has increased by 11%–52%and 23%–77%.In different projects,improvements of 9%–60%and 18%–77%have been achieved,which are superior to existing advanced methods and have good detection performance.
基金supported by the Natural Science Foundation of Henan under Grant 242300421220the Henan Provincial Science and Technology Research Project under Grants 252102211047 and 252102211062+3 种基金the Jiangsu Provincial Scheme Double Initiative Plan JSS-CBS20230474the XJTLU RDF-21-02-008the Science and Technology Innovation Project of Zhengzhou University of Light Industry under Grant 23XNKJTD0205the Higher Education Teaching Reform Research and Practice Project of Henan Province under Grant 2024SJGLX0126.
文摘With the increasing importance of multimodal data in emotional expression on social media,mainstream methods for sentiment analysis have shifted from unimodal to multimodal approaches.However,the challenges of extracting high-quality emotional features and achieving effective interaction between different modalities remain two major obstacles in multimodal sentiment analysis.To address these challenges,this paper proposes a Text-Gated Interaction Network with Inter-Sample Commonality Perception(TGICP).Specifically,we utilize a Inter-sample Commonality Perception(ICP)module to extract common features from similar samples within the same modality,and use these common features to enhance the original features of each modality,thereby obtaining a richer and more complete multimodal sentiment representation.Subsequently,in the cross-modal interaction stage,we design a Text-Gated Interaction(TGI)module,which is text-driven.By calculating the mutual information difference between the text modality and nonverbal modalities,the TGI module dynamically adjusts the influence of emotional information from the text modality on nonverbal modalities.This helps to reduce modality information asymmetry while enabling full cross-modal interaction.Experimental results show that the proposed model achieves outstanding performance on both the CMU-MOSI and CMU-MOSEI baseline multimodal sentiment analysis datasets,validating its effectiveness in emotion recognition tasks.
基金Youth Innovation Promotion Association CAS,Grant/Award Number:2021103Strategic Priority Research Program of Chinese Academy of Sciences,Grant/Award Number:XDC02060500。
文摘Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting.
基金the National Natural Science Foundation of China(NNSFC)(Grant Nos.72001213 and 72301292)the National Social Science Fund of China(Grant No.19BGL297)the Basic Research Program of Natural Science in Shaanxi Province(Grant No.2021JQ-369).
文摘Due to the time-varying topology and possible disturbances in a conflict environment,it is still challenging to maintain the mission performance of flying Ad hoc networks(FANET),which limits the application of Unmanned Aerial Vehicle(UAV)swarms in harsh environments.This paper proposes an intelligent framework to quickly recover the cooperative coveragemission by aggregating the historical spatio-temporal network with the attention mechanism.The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model.A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction by capturing the temporal network structure.Combined with the corresponding Laplacian matrix as the hyperparameter,a recovery algorithm based on the multi-head attention graph network is designed to achieve rapid recovery.Simulation results showed that the proposed framework can facilitate rapid recovery of the connectivity and coverage more effectively compared to the existing studies.The results demonstrate that the average connectivity and coverage results is improved by 17.92%and 16.96%,respectively compared with the state-of-the-art model.Furthermore,by the ablation study,the contributions of each different improvement are compared.The proposed model can be used to support resilient network design for real-time mission execution.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72031009 and 61473338)。
文摘In the current information society, the dissemination mechanisms and evolution laws of individual or collective opinions and their behaviors are the research hot topics in the field of opinion dynamics. First, in this paper, a two-layer network consisting of an individual-opinion layer and a collective-opinion layer is constructed, and a dissemination model of opinions incorporating higher-order interactions(i.e. OIHOI dissemination model) is proposed. Furthermore, the dynamic equations of opinion dissemination for both individuals and groups are presented. Using Lyapunov's first method,two equilibrium points, including the negative consensus point and positive consensus point, and the dynamic equations obtained for opinion dissemination, are analyzed theoretically. In addition, for individual opinions and collective opinions,some conditions for reaching negative consensus and positive consensus as well as the theoretical expression for the dissemination threshold are put forward. Numerical simulations are carried to verify the feasibility and effectiveness of the proposed theoretical results, as well as the influence of the intra-structure, inter-connections, and higher-order interactions on the dissemination and evolution of individual opinions. The main results are as follows.(i) When the intra-structure of the collective-opinion layer meets certain characteristics, then a negative or positive consensus is easier to reach for individuals.(ii) Both negative consensus and positive consensus perform best in mixed type of inter-connections in the two-layer network.(iii) Higher-order interactions can quickly eliminate differences in individual opinions, thereby enabling individuals to reach consensus faster.
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072340)the China Postdoctoral Science Foundation(Grant No.2022M720727)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB130).
文摘We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(2018R1A6A1A03024003)the MSIT(Ministry of Science and ICT),Korea,under the Innovative Human Resource Development for Local Intellectualization support program(IITP-2023-2020-0-01612)supervised by the IITP(Institute for Information&communications TechnologyPlanning&Evaluation).
文摘In industrial wireless networks,data transmitted from source to destination are highly repetitive.This often leads to the queuing of the data,and poor management of the queued data results in excessive delays,increased energy consumption,and packet loss.Therefore,a nature-inspired-based Dragonfly Interaction Optimization Algorithm(DMOA)is proposed for optimization of the queue delay in industrial wireless networks.The term“interaction”herein used is the characterization of the“flying movement”of the dragonfly towards damselflies(female dragonflies)for mating.As a result,interaction is represented as the flow of transmitted data packets,or traffic,from the source to the base station.This includes each and every feature of dragonfly movement as well as awareness of the rival dragonflies,predators,and damselflies for the desired optimization of the queue delay.These features are juxtaposed as noise and interference,which are further used in the calculation of industrial wireless metrics:latency,error rate(reliability),throughput,energy efficiency,and fairness for the optimization of the queue delay.Statistical analysis,convergence analysis,the Wilcoxon test,the Friedman test,and the classical as well as the 2014 IEEE Congress of Evolutionary Computation(CEC)on the benchmark functions are also used for the evaluation of DMOA in terms of its robustness and efficiency.The results demonstrate the robustness of the proposed algorithm for both classical and benchmarking functions of the IEEE CEC 2014.Furthermore,the accuracy and efficacy of DMOA were demonstrated by means of the convergence rate,Wilcoxon testing,and ANOVA.Moreover,fairness using Jain’s index in queue delay optimization in terms of throughput and latency,along with computational complexity,is also evaluated and compared with other algorithms.Simulation results show that DMOA exceeds other bio-inspired optimization algorithms in terms of fairness in queue delay management and average packet loss.The proposed algorithm is also evaluated for the conflicting objectives at Pareto Front,and its analysis reveals that DMOA finds a compromising solution between the objectives,thereby optimizing queue delay.In addition,DMOA on the Pareto front delivers much greater performance when it comes to optimizing the queuing delay for industry wireless networks.
基金National Key Research and Development Program of China(2019YFB1600400)National Natural Science Foundation of China(72174035)+2 种基金National Natural Science Foundation of China(71774018)Liaoning Revitalization Talents Program(XLYC2008030)Liaoning Provincial Natural Science Foundation Shipping Joint Foundation Program(2020-HYLH-20)。
文摘It is urgent and important to explore the dynamic evolution in comprehensive transportation green efficiency(CTGE)in the context of green development.We constructed a social development index that reflects the social benefits of transportation services,and incorporated it into the comprehensive transportation efficiency evaluation framework as an expected output.Based on the panel data of 30 regions in China from 2003-2018,the CTGE in China was measured using the slacks-based measure-data envelopment analysis(SBM-DEA)model.Further,the dynamic evolution trends of CTGE were determined using the spatial Markov model and exploratory spatio-temporal data analysis(ESTDA)technique from a spatio-temporal perspective.The results showed that the CTGE shows a U-shaped change trend but with an overall low level and significant regional differences.The state transition of CTGE has a strong spatial dependence,and there exists the phenomenon of“club convergence”.Neighbourhood background has a significant impact on the CTGE transition types,and the spatial spillover effect is pronounced.The CTGE has an obvious positive correlation and spatial agglomeration characteristics.The geometric characteristics of the LISA time path show that the evolution process of local spatial structure and local spatial dependence of China’s CTGE is stable,but the integration of spatial evolution is weak.The spatio-temporal transition results of LISA indicate that the CTGE has obvious transfer inertness and has certain path-dependence and spatial locking characteristics,which will become the major difficulty in improving the CTGE.
文摘E3 ubiquitin ligases are participated in numerous processes, regulating the response to biotic and abiotic stresses. Botrytis susceptible1 interactor (BOI) is a RING (Really Interesting New Gene)-type E3 ligase that mediates the ubiquitination of BOS1 (Botrytis susceptible1), a transcription factor involved in stress and pathogen responses. Although BOI is an E3 ligase, there are reports to show that BOI interacts with target proteins such as DELLAs or CONSTANS to repress gibberellin responses and flowering without the degradation of the target proteins. In this article, we utilize diversified methods to comprehensively analyze the expression pattern, interaction network and function of BOI gene. Firstly, 1800 bp upstream region of BOI gene from Arabidopsis thaliana (Arabidopsis) genome was isolated, and fused GUS reporter gene. The resulting expression cassette was introduced into wild-type Arabidopsis through Agrobacterium-mediated transformation. The result demonstrated that BOI gene was expressed predominantly in leaves, siliques, young roots, and flowering tissues, indicating that BOI gene may be involved in multiple processes in plant growth and development in Arabidopsis. Besides, eight candidate interacting proteins were obtained from the Arabidopsis cDNA library via yeast two-hybrid technology, including EXO70E2 (AT5G61010), WRKY7 (AT4G24240), WRKY11 (AT4G31550), WRKY17 (AT2G24570), UBP20 (AT4G17895), L5 (AT1G12290), SAUR9 (AT4G36110) and TCP21 (AT5G08330). Functional analysis of these candidate interacting proteins manifested that they related to multiple pathways, including biological and abiotic stress, programmed cell death, protein degradation, material metabolism and transcriptional regulation. In addition, the results of the transient assay proclaimed that BOI protein affects the protein stability of EXO70E2 and L5 through its E3 ubiquitin ligase activity. Our results provide novel clues for a better understanding of molecular mechanisms underlying BOI-mediated regulations.
基金Under the auspices of National High Technology Research and Development Program of China (No.2007AA12Z242)
文摘The technique of incremental updating,which can better guarantee the real-time situation of navigational map,is the developing orientation of navigational road network updating.The data center of vehicle navigation system is in charge of storing incremental data,and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal.According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model,the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request.RMOM supports the data center to store not only the current complete road network data,but also the overlays of incremental data from the time when each road network changed to the current moment.Moreover,the storage mechanism and index structure of the incremental data were designed,and the implementation algorithm of RMOM was developed.Taking navigational road network in Guangzhou City as an example,the simulation test was conducted to validate the efficiency of RMOM.Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM,and costs less time.Compared with the base map with overlay model,the data center does not need to temporarily overlay incremental data with RMOM,so time-consuming of response is significantly reduced.RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.
文摘Due to the increasingly severe challenges brought by various epidemic diseases,people urgently need intelligent outbreak trend prediction.Predicting disease onset is very important to assist decision-making.Most of the exist-ing work fails to make full use of the temporal and spatial characteristics of epidemics,and also relies on multi-variate data for prediction.In this paper,we propose a Multi-Scale Location Attention Graph Neural Networks(MSLAGNN)based on a large number of Centers for Disease Control and Prevention(CDC)patient electronic medical records research sequence source data sets.In order to understand the geography and timeliness of infec-tious diseases,specific neural networks are used to extract the geography and timeliness of infectious diseases.In the model framework,the features of different periods are extracted by a multi-scale convolution module.At the same time,the propagation effects between regions are simulated by graph convolution and attention mechan-isms.We compare the proposed method with the most advanced statistical methods and deep learning models.Meanwhile,we conduct comparative experiments on data sets with different time lengths to observe the predic-tion performance of the model in the face of different degrees of data collection.We conduct extensive experi-ments on real-world epidemic-related data sets.The method has strong prediction performance and can be readily used for epidemic prediction.
基金supported in part by the Science and Technology Project of Hebei Education Department(No.ZD2021088)in part by the S&T Major Project of the Science and Technology Ministry of China(No.2017YFE0135700)。
文摘Spatio-temporal cellular network traffic prediction at wide-area level plays an important role in resource reconfiguration,traffic scheduling and intrusion detection,thus potentially supporting connected intelligence of the sixth generation of mobile communications technology(6G).However,the existing studies just focus on the spatio-temporal modeling of traffic data of single network service,such as short message,call,or Internet.It is not conducive to accurate prediction of traffic data,characterised by diverse network service,spatio-temporality and supersize volume.To address this issue,a novel multi-task deep learning framework is developed for citywide cellular network traffic prediction.Functionally,this framework mainly consists of a dual modular feature sharing layer and a multi-task learning layer(DMFS-MT).The former aims at mining long-term spatio-temporal dependencies and local spatio-temporal fluctuation trends in data,respectively,via a new combination of convolutional gated recurrent unit(ConvGRU)and 3-dimensional convolutional neural network(3D-CNN).For the latter,each task is performed for predicting service-specific traffic data based on a fully connected network.On the real-world Telecom Italia dataset,simulation results demonstrate the effectiveness of our proposal through prediction performance measure,spatial pattern comparison and statistical distribution verification.
文摘According to the disease module hypothesis,the cellular components associated with a disease segregate in the same neighborhood of the human interactome,the map of biologically relevant molecular interactions.Yet,given the incompleteness of the interactome and the limited knowledge of disease-associated genes,it is not obvious if the available data have sufficient coverage to map out modules associated with each disease.