Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the ...Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the probability of catastrophic behavior in case of accidents.Equilibrium damage accumulation in some cases leads to a falling part(called a postcritical stage)on the material’s stress-strain curve.It must be taken into account to assess the strength and deformation limits of composite structures.Digital image correlation method,acoustic emission(AE)signals recording,and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes.An elastic-plastic deformation model was proposed for the composite in a plane stress condition.The evolution of strain fields and neck formation were analyzed.The staging of the postcritical deformation process was described.AE signals obtained during tests were studied;characteristic damage types of a material were defined.The rationality and necessity of polymer composites’postcritical deformation stage taken into account in refined strength analysis of structures were concluded.展开更多
The stratospheric airship is affected by harsh conditions in the stratosphere environment.To ensure the safety of the airship,it is necessary to detect the material state of the airship envelope.Since digital image co...The stratospheric airship is affected by harsh conditions in the stratosphere environment.To ensure the safety of the airship,it is necessary to detect the material state of the airship envelope.Since digital image correlation possesses non-contact strain measurement ability,this paper explores the infuence of different shapes of the subset on measurement accuracy.Through the results,it is found that increasing the aspect ratio of subsets can improve the strain accuracy measured in the c-direction,and reducing the aspect ratio can improve the strain accuracy measured in the y-direction.This trend becomes more obvious as the strain increases.Based on this discovery,a subset adaptive algorithm is proposed.The feasibility of the algorithm is verified by experiments,and the precision of strain measurement can be effectively improved by adjusting the threshold value.Therefore,the algorithm can be utilized to increase the measurement accuracy in the larger strain direction without changing the size of the subset.展开更多
Coal mass consists of matrices and cleats,which exhibits significant difference in mechanical properties,such as uniaxial compressive strength and Young’s modulus.Understanding this difference is critical for a numbe...Coal mass consists of matrices and cleats,which exhibits significant difference in mechanical properties,such as uniaxial compressive strength and Young’s modulus.Understanding this difference is critical for a number of engineering applications,such as assessing the stability of cleated coal seam gas wellbores,underground exca-vation stability in coal seams,and estimating cleat aperture response during gas extraction and surface response to reservoir depletion.The conventional method of measuring coal mechanical properties using strain gauges or displacement transducers is impractical and unreliable as it only captures the value for the installed point.This study explores the use of a two-dimensional Digital Image Correlation(2D-DIC)method to quantify the areal deformation of coal matrix and cleat regions and their contribution to the bulk mechanical properties of coal.Cyclic uniaxial compression tests were performed on coal specimens from the Goonyella Middle Seam,Australia.The results from the DIC technique were initially validated against strain gauge and Advanced Video Exten-someter(AVE)measurements,showing minimal percentage differences:5%with the strain gauge;16.6%with the coal cleat region,12.03%with the coal matrix region,and 9.28%with the coal bulk region compared to AVE.These results demonstrate that DIC is a reliable and accurate method for measuring coal deformation.Comparative analysis of cleat,matrix,and overall coal surface regions revealed distinct variations in Young’s modulus,with ratios of E_(cleat):E_(matrix):E_(overall)=0.24:1.60:1.00.The calculated cleat and matrix moduli are 143.6 MPa and 1785.3 MPa respectively.The contributions of E_(matrix)and E_(cleat)to the overall Young’s modulus(E_(overall))were quantified,revealing that the matrix accounts for 56%(A=0.56)and the cleat for 44%(1-A=0.44)of the overall modulus.The compressibility of the cleat shows six times that of the coal matrix(C_(cleat):C_(matrix):C_(overall)=4.24:0.62:1.00),highlighting the critical role of cleats in coal deformation and stress-induced permeability changes.Furthermore,Poisson’s ratios computed from the DIC for the tested coal samples range from 0.19 to 0.33,showing strong agreement with reported values in the literature.By integrating DIC analysis with traditional mechanical testing,this study offers a robust approach to evaluating full-field deformation mechanisms in fractured materials.These findings advance the understanding of coal’s mechanical properties,which in turn supports more accurate geotechnical modeling,optimizes mining design,and enhances coal seam gas extraction strategies.展开更多
Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithm...Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.展开更多
In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is ...In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.展开更多
Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer ...Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.展开更多
False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading fail...False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.展开更多
Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.Ho...Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.However,these models still face challenges in effectively capturing local associations.Moreover,since the encoder extracts global and local association features that focus on different semantic information,semantic noise may occur during the decoding stage.To address these issues,we propose the Local Relationship Enhanced Gated Transformer(LREGT).In the encoder part,we introduce the Local Relationship Enhanced Encoder(LREE),whose core component is the Local Relationship Enhanced Module(LREM).LREM consists of two novel designs:the Local Correlation Perception Module(LCPM)and the Local-Global Fusion Module(LGFM),which are beneficial for generating a comprehensive feature representation that integrates both global and local information.In the decoder part,we propose the Dual-level Multi-branch Gated Decoder(DMGD).It first creates multiple decoding branches to generate multi-perspective contextual feature representations.Subsequently,it employs the Dual-Level Gating Mechanism(DLGM)to model the multi-level relationships of these multi-perspective contextual features,enhancing their fine-grained semantics and intrinsic relationship representations.This ultimately leads to the generation of high-quality and semantically rich image captions.Experiments on the standard MSCOCO dataset demonstrate that LREGT achieves state-of-the-art performance,with a CIDEr score of 140.8 and BLEU-4 score of 41.3,significantly outperforming existing mainstream methods.These results highlight LREGT’s superiority in capturing complex visual relationships and resolving semantic noise during decoding.展开更多
Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-sca...Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.展开更多
In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in...In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.展开更多
Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-...Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.展开更多
In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic ...In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.展开更多
The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in sp...The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.展开更多
Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present ...Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.展开更多
A conventional contact method(using linear transducers)and a non-contact method are deployed to measure the axial and lateral deformations of large scale cylindrical cemented rockfill specimens.Experimental works inco...A conventional contact method(using linear transducers)and a non-contact method are deployed to measure the axial and lateral deformations of large scale cylindrical cemented rockfill specimens.Experimental works incorporating two pinhole cameras to create one stereovision by digital image correlation shows that the non-contact method is as reliable for testing large cylindrical specimens as measurements done by using linear variable displacement transformer and string potentiometer.Considering this particular large specimen,the experiment resulted in the acceptable mean difference between lateral strain using both methods is 5.1 percent,and 14.5 percent for the axial strain.This occurrence is inevitable due to the heterogeneity of the concrete system and the placement of the monitoring point in digital image correlation method,although the comparison of stress-strain relationship in both methods still indicates a conformity.Based on the results of the present experiments,the authors recommend the noncontact method for a detailed investigation of the material behavior during the uniaxial compressive strength tests.Full field strain measurement enables this digital method to examine local strains near cracks at any point,a very useful tool for studying material deformation behavior.展开更多
The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary l...The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.展开更多
Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials ...Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.展开更多
Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (S...Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test.The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera.The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method.The crack opening displacement is calculated from the displacement fields,the initiation and propagation of the crack are analyzed.In addition,the damage evolution and fracture mechanisms of the SCB sample are analyzed according to the strain fields and the correlation coefficient fields at different loading steps.展开更多
An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electro...An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electron microscope, the fatigue residual strain distribution at the grain scale has been obtained. The results showed that there is a trend of accumulation for the residual strain. Micro-cracks are more likely to initiate in or near the areas with particularly large residual strain, and propagate along the large-strain paths.展开更多
Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a disto...Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.展开更多
基金This work was supported by the Russian Science Foundation(Grant No.22-19-00765)at the Perm National Research Polytechnic University.
文摘Creating conditions to implement equilibrium processes of damage accumulation under a predictable scenario enables control over the failure of structural elements in critical states.It improves safety and reduces the probability of catastrophic behavior in case of accidents.Equilibrium damage accumulation in some cases leads to a falling part(called a postcritical stage)on the material’s stress-strain curve.It must be taken into account to assess the strength and deformation limits of composite structures.Digital image correlation method,acoustic emission(AE)signals recording,and optical microscopy were used in this paper to study the deformation and failure processes of an orthogonal-layup composite during tension in various directions to orthotropy axes.An elastic-plastic deformation model was proposed for the composite in a plane stress condition.The evolution of strain fields and neck formation were analyzed.The staging of the postcritical deformation process was described.AE signals obtained during tests were studied;characteristic damage types of a material were defined.The rationality and necessity of polymer composites’postcritical deformation stage taken into account in refined strength analysis of structures were concluded.
文摘The stratospheric airship is affected by harsh conditions in the stratosphere environment.To ensure the safety of the airship,it is necessary to detect the material state of the airship envelope.Since digital image correlation possesses non-contact strain measurement ability,this paper explores the infuence of different shapes of the subset on measurement accuracy.Through the results,it is found that increasing the aspect ratio of subsets can improve the strain accuracy measured in the c-direction,and reducing the aspect ratio can improve the strain accuracy measured in the y-direction.This trend becomes more obvious as the strain increases.Based on this discovery,a subset adaptive algorithm is proposed.The feasibility of the algorithm is verified by experiments,and the precision of strain measurement can be effectively improved by adjusting the threshold value.Therefore,the algorithm can be utilized to increase the measurement accuracy in the larger strain direction without changing the size of the subset.
文摘Coal mass consists of matrices and cleats,which exhibits significant difference in mechanical properties,such as uniaxial compressive strength and Young’s modulus.Understanding this difference is critical for a number of engineering applications,such as assessing the stability of cleated coal seam gas wellbores,underground exca-vation stability in coal seams,and estimating cleat aperture response during gas extraction and surface response to reservoir depletion.The conventional method of measuring coal mechanical properties using strain gauges or displacement transducers is impractical and unreliable as it only captures the value for the installed point.This study explores the use of a two-dimensional Digital Image Correlation(2D-DIC)method to quantify the areal deformation of coal matrix and cleat regions and their contribution to the bulk mechanical properties of coal.Cyclic uniaxial compression tests were performed on coal specimens from the Goonyella Middle Seam,Australia.The results from the DIC technique were initially validated against strain gauge and Advanced Video Exten-someter(AVE)measurements,showing minimal percentage differences:5%with the strain gauge;16.6%with the coal cleat region,12.03%with the coal matrix region,and 9.28%with the coal bulk region compared to AVE.These results demonstrate that DIC is a reliable and accurate method for measuring coal deformation.Comparative analysis of cleat,matrix,and overall coal surface regions revealed distinct variations in Young’s modulus,with ratios of E_(cleat):E_(matrix):E_(overall)=0.24:1.60:1.00.The calculated cleat and matrix moduli are 143.6 MPa and 1785.3 MPa respectively.The contributions of E_(matrix)and E_(cleat)to the overall Young’s modulus(E_(overall))were quantified,revealing that the matrix accounts for 56%(A=0.56)and the cleat for 44%(1-A=0.44)of the overall modulus.The compressibility of the cleat shows six times that of the coal matrix(C_(cleat):C_(matrix):C_(overall)=4.24:0.62:1.00),highlighting the critical role of cleats in coal deformation and stress-induced permeability changes.Furthermore,Poisson’s ratios computed from the DIC for the tested coal samples range from 0.19 to 0.33,showing strong agreement with reported values in the literature.By integrating DIC analysis with traditional mechanical testing,this study offers a robust approach to evaluating full-field deformation mechanisms in fractured materials.These findings advance the understanding of coal’s mechanical properties,which in turn supports more accurate geotechnical modeling,optimizes mining design,and enhances coal seam gas extraction strategies.
基金supported in part by the National Natural Science Foundation of China (No. U23B2011)。
文摘Video snapshot compressive imaging(Video SCI) modulates scenes using various encoding masks and captures compressed measurements with a low-speed camera during a single exposure. Subsequently, reconstruction algorithms restore image sequences of dynamic scenes, offering advantages such as reduced bandwidth and storage space requirements. The temporal correlation in video data is crucial for Video SCI, as it leverages the temporal relationships among frames to enhance the efficiency and quality of reconstruction algorithms, particularly for fast-moving objects.This paper discretizes video frames to create image datasets with the same data volume but differing temporal correlations. We utilized the state-of-the-art(SOTA) reconstruction framework, EfficientSCI++, to train various compressed reconstruction models with these differing temporal correlations. Evaluating the reconstruction results from these models, our simulation experiments confirm that a reduction in temporal correlation leads to decreased reconstruction accuracy. Additionally, we simulated the reconstruction outcomes of datasets devoid of temporal correlation, illustrating that models trained on non-temporal data affect the temporal feature extraction capabilities of transformers, resulting in negligible impacts on the evaluation of reconstruction results for non-temporal correlation test datasets.
基金supported by the National Natural Science Foundation of China(Grant Nos.12272145 and 11972013)the Ministry of Science and Technology of China(Grant No.2018YFF01014200)Hubei Provincial Natural Science Foundation of China(Grant No.2022CFB288).
文摘In this paper,we introduce an accelerating algorithm based on the Taylor series for reconstructing target images in the spectral digital image correlation method(SDIC).The Taylor series image reconstruction method is employed instead of the previous direct Fourier transform(DFT)image reconstruction method,which consumes the majority of the computational time for target image reconstruction.The partial derivatives in the Taylor series are computed using the fast Fourier transform(FFT)of the entire image,following the principles of Fourier transform theory.To examine the impact of different orders of Taylor series expansion on accuracy and efficiency,we employ third-and fourth-order Taylor series image reconstruction methods and compare them with the DFT image reconstruction method through simulated experiments.As a result of these enhancements,the computational efficiency using the third-and fourth-order Taylor series improves by factors of 57 and 46,respectively,compared to the previous method.In terms of analysis accuracy,within a strain range of 0–0.1 and without the addition of image noise,the accuracy of the proposed method increases with higher expansion orders,surpassing that of the DFT image reconstruction method when the fourth order is utilized.However,when different levels of Gaussian noise are applied to simulated images individually,the accuracy of the third-or fourth-order Taylor series expansion method is superior to that of the DFT reconstruction method.Finally,we present the analyzed experimental results of a silicone rubber plate specimen with bilateral cracks under uniaxial tension.
基金National Natural Science Foundation of China(82305090)Science and Technology Commission of Shanghai Municipality(22YF1448900)Shanghai Municipal Health Commission(20234Y0168).
文摘Objective To analyze the differences in the correlation of tongue image indicators among patients with benign lung nodules and lung cancer.Methods From July 1;2020 to March 31;2022;clinical information of lung cancer patients and benign lung nodules patients was collected at the Oncology Department of Longhua Hos-pital Affiliated to Shanghai University of Traditional Chinese Medicine and the Physical Ex-amination Center of Shuguang Hospital Affiliated to Shanghai University of Traditional Chi-nese Medicine;respectively.We obtained tongue images from patients with benign lung nod-ules and lung cancer using the TFDA-1 digital tongue diagnosis instrument;and analyzed these images with the TDAS V2.0 software.The extracted indicators included color space pa-rameters in the Lab system for both the tongue body(TB)and tongue coating(TC)(TB/TC-L;TB/TC-a;and TB/TC-b);textural parameters[TB/TC-contrast(CON);TB/TC-angular second moment(ASM);TB/TC-entropy(ENT);and TB/TC-MEAN];as well as TC parameters(perAll and perPart).The bivariate correlation of TB and TC features was analyzed using Pearson’s or Spearman’s correlation analysis;and the overall correlation was analyzed using canonical correlation analysis(CCA).Results Samples from 307 patients with benign lung nodules and 276 lung cancer patients were included after excluding outliers and extreme values.Simple correlation analysis indi-cated that the correlation of TB-L with TC-L;TB-b with TC-b;and TB-b with perAll in lung cancer group was higher than that in benign nodules group.Moreover;the correlation of TB-a with TC-a;TB-a with perAll;and the texture parameters of the TB(TB-CON;TB-ASM;TB-ENT;and TB-MEAN)with the texture parameters of the TC(TC-CON;TC-ASM;TC-ENT;and TC-MEAN)in benign nodules group was higher than lung cancer group.CCA further demon-strated a strong correlation between the TB and TC parameters in lung cancer group;with the first and second pairs of typical variables in benign nodules and lung cancer groups indicat-ing correlation coefficients of 0.918 and 0.817(P<0.05);and 0.940 and 0.822(P<0.05);re-spectively.Conclusion Benign lung nodules and lung cancer patients exhibited differences in correla-tion in the L;a;and b values of the TB and TC;as well as the perAll value of the TC;and the texture parameters(TB/TC-CON;TB/TC-ASM;TB/TC-ENT;and TB/TC-MEAN)between the TB and TC.Additionally;there were differences in the overall correlation of the TB and TC be-tween the two groups.Objective tongue diagnosis indicators can effectively assist in the diag-nosis of benign lung nodules and lung cancer;thereby providing a scientific basis for the ear-ly detection;diagnosis;and treatment of lung cancer.
基金supported by National Key Research and Development Plan of China(No.2022YFB3103304).
文摘False Data Injection Attacks(FDIAs)pose a critical security threat to modern power grids,corrupting state estimation and enabling malicious control actions that can lead to severe consequences,including cascading failures,large-scale blackouts,and significant economic losses.While detecting attacks is important,accurately localizing compromised nodes or measurements is even more critical,as it enables timely mitigation,targeted response,and enhanced system resilience beyond what detection alone can offer.Existing research typically models topological features using fixed structures,which can introduce irrelevant information and affect the effectiveness of feature extraction.To address this limitation,this paper proposes an FDIA localization model with adaptive neighborhood selection,which dynamically captures spatial dependencies of the power grid by adjusting node relationships based on data-driven similarities.The improved Transformer is employed to pre-fuse global spatial features of the graph,enriching the feature representation.To improve spatio-temporal correlation extraction for FDIA localization,the proposed model employs dilated causal convolution with a gating mechanism combined with graph convolution to capture and fuse long-range temporal features and adaptive topological features.This fully exploits the temporal dynamics and spatial dependencies inherent in the power grid.Finally,multi-source information is integrated to generate highly robust node embeddings,enhancing FDIA detection and localization.Experiments are conducted on IEEE 14,57,and 118-bus systems,and the results demonstrate that the proposed model substantially improves the accuracy of FDIA localization.Additional experiments are conducted to verify the effectiveness and robustness of the proposed model.
基金supported by the Natural Science Foundation of China(62473105,62172118)Nature Science Key Foundation of Guangxi(2021GXNSFDA196002)+1 种基金in part by the Guangxi Key Laboratory of Image and Graphic Intelligent Processing under Grants(GIIP2302,GIIP2303,GIIP2304)Innovation Project of Guang Xi Graduate Education(2024YCXB09,2024YCXS039).
文摘Existing Transformer-based image captioning models typically rely on the self-attention mechanism to capture long-range dependencies,which effectively extracts and leverages the global correlation of image features.However,these models still face challenges in effectively capturing local associations.Moreover,since the encoder extracts global and local association features that focus on different semantic information,semantic noise may occur during the decoding stage.To address these issues,we propose the Local Relationship Enhanced Gated Transformer(LREGT).In the encoder part,we introduce the Local Relationship Enhanced Encoder(LREE),whose core component is the Local Relationship Enhanced Module(LREM).LREM consists of two novel designs:the Local Correlation Perception Module(LCPM)and the Local-Global Fusion Module(LGFM),which are beneficial for generating a comprehensive feature representation that integrates both global and local information.In the decoder part,we propose the Dual-level Multi-branch Gated Decoder(DMGD).It first creates multiple decoding branches to generate multi-perspective contextual feature representations.Subsequently,it employs the Dual-Level Gating Mechanism(DLGM)to model the multi-level relationships of these multi-perspective contextual features,enhancing their fine-grained semantics and intrinsic relationship representations.This ultimately leads to the generation of high-quality and semantically rich image captions.Experiments on the standard MSCOCO dataset demonstrate that LREGT achieves state-of-the-art performance,with a CIDEr score of 140.8 and BLEU-4 score of 41.3,significantly outperforming existing mainstream methods.These results highlight LREGT’s superiority in capturing complex visual relationships and resolving semantic noise during decoding.
文摘Rock fracture mechanics and accurate characterization of rock fracture are crucial for understanding a variety of phenomena interested in geological engineering and geoscience.These phenomena range from very large-scale asymmetrical fault structures to the scale of engineering projects and laboratory-scale rock fracture tests.Comprehensive study can involve mechanical modeling,site or post-mortem investigations,and inspection on the point cloud of the source locations in the form of earthquake,microseismicity,or acoustic emission.This study presents a comprehensive data analysis on characterizing the forming of the asymmetrical damage zone around a laboratory mixed-mode rock fracture.We substantiate the presence of asymmetrical damage through qualitative analysis and demonstrate that measurement uncertainties cannot solely explain the observed asymmetry.The implications of this demonstration can be manifold.On a larger scale,it solidifies a mechanical model used for explaining the contribution of aseismic mechanisms to asymmetrical fault structures.On a laboratory scale,it exemplifies an alternative approach to understanding the observational difference between the source location and the in situ or post-mortem inspection on the rock fracture path.The mechanical model and the data analysis can be informative to the interpretations of other engineering practices as well,but may face different types of challenges.
文摘In order to evaluate the accumulative of tensile strain in the process of fatigue failure, the digital image correlation(DIC) method was utilized to characterize the tensile strain development of asphalt mixtures in the indirect tensile(IDT)fatigue test. Three typical hot mix asphalt(HMA) mixtures with varying nominal maximum aggregate sizes were tested at four stress levels. During the tests, a digital camera was mounted to capture the displacement/strain fields on the surface of the specimen by recording the real-time change of speckle position. The results indicate that the vertical deformation curve can barely evaluate the fatigue performance accurately due to the non-negligible local deflection near the loading point. However, based on the analysis of strain fields,the optimal fatigue cracking zone is determined as a 40mm×40mm rectangle in the middle of the specimens. Also, a reasonable fatigue model based on the tensile strain curves calculated by DIC is proposed to predict the fatigue lives of asphalt mixtures.
基金Supported by the National Basic Research Program of China(2011CB707904)the Natural Science Foundation of China(61472289)Hubei Province Natural Science Foundation of China(2015CFB254)
文摘Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.
基金supported by the National Basic Research 973 Program of China (Grant 2014CB046905)the Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars (Grant BK20150005)+1 种基金the Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (Grant 2014XT03)the innovation research project for academic graduate of Jiangsu Province (Grant KYLX16_0536)
文摘In this paper, uniaxial compression tests were carried out on a series of composite rock specimens with different dip angles, which were made from two types of rock-like material with different strength. The acoustic emission technique was used to monitor the acoustic signal characteristics of composite rock specimens during the entire loading process. At the same time, an optical non-contact 3 D digital image correlation technique was used to study the evolution of axial strain field and the maximal strain field before and after the peak strength at different stress levels during the loading process. The effect of bedding plane inclination on the deformation and strength during uniaxial loading was analyzed. The methods of solving the elastic constants of hard and weak rock were described. The damage evolution process, deformation and failure mechanism, and failure mode during uniaxial loading were fully determined. The experimental results show that the θ = 0?–45?specimens had obvious plastic deformation during loading, and the brittleness of the θ = 60?–90?specimens gradually increased during the loading process. When the anisotropic angle θincreased from 0?to 90?, the peak strength, peak strain,and apparent elastic modulus all decreased initially and then increased. The failure mode of the composite rock specimen during uniaxial loading can be divided into three categories:tensile fracture across the discontinuities(θ = 0?–30?), slid-ing failure along the discontinuities(θ = 45?–75?), and tensile-split along the discontinuities(θ = 90?). The axial strain of the weak and hard rock layers in the composite rock specimen during the loading process was significantly different from that of the θ = 0?–45?specimens and was almost the same as that of the θ = 60?–90?specimens. As for the strain localization highlighted in the maximum principal strain field, the θ = 0?–30?specimens appeared in the rock matrix approximately parallel to the loading direction,while in the θ = 45?–90?specimens it appeared at the hard and weak rock layer interface.
基金supported by the Deep Exploration Technologies Cooperative Research Centre whose activities are funded by the Australian Government's Cooperative Research Centre Programme.This is DET CRC Document 2017/954
文摘The complete stress-strain characteristics of sandstone specimens were investigated in a series of quasistatic monotonic uniaxial compression tests.Strain patterns development during pre-and post-peak behaviours in specimens with different aspect ratios was also examined.Peak stress,post-peak portion of stress-strain,brittleness,characteristics of progressive localisation and field strain patterns development were affected at different extents by specimen aspect ratio.Strain patterns of the rocks were obtained by applying three-dimensional(3D) digital image correlation(DIC) technique.Unlike conventional strain measurement using strain gauges attached to specimen,3D DIC allowed not only measuring large strains,but more importantly,mapping the development of field strain throughout the compression test,i.e.in pre-and post-peak regimes.Field strain development in the surface of rock specimen suggests that strain starts localising progressively and develops at a lower rate in pre-peak regime.However,in post-peak regime,strains increase at different rates as local deformations take place at different extents in the vicinity and outside the localised zone.The extent of localised strains together with the rate of strain localisation is associated with the increase in rate of strength degradation.Strain localisation and local inelastic unloading outside the localised zone both feature post-peak regime.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF)the Ministry of Education, Science and Technology (Grant number: 2009-0083068)
文摘Beetle wings are very specialized flight organs consisting of the veins and membranes.Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally.In the present study,we have used a Digital Image Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane.Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm).We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane.The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator.We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen.The thickness of the beetle wing varied at different points of the membrane.The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy;the elastic modulus in the chordwise direction is approximately 2.65 GPa,which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa.As a result,the digital image correlation-based ARAMIS system was suc- cessfully used to measure the elastic modulus of a beetle wing.In addition to membrane's elastic modulus,we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine.The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.
文摘A conventional contact method(using linear transducers)and a non-contact method are deployed to measure the axial and lateral deformations of large scale cylindrical cemented rockfill specimens.Experimental works incorporating two pinhole cameras to create one stereovision by digital image correlation shows that the non-contact method is as reliable for testing large cylindrical specimens as measurements done by using linear variable displacement transformer and string potentiometer.Considering this particular large specimen,the experiment resulted in the acceptable mean difference between lateral strain using both methods is 5.1 percent,and 14.5 percent for the axial strain.This occurrence is inevitable due to the heterogeneity of the concrete system and the placement of the monitoring point in digital image correlation method,although the comparison of stress-strain relationship in both methods still indicates a conformity.Based on the results of the present experiments,the authors recommend the noncontact method for a detailed investigation of the material behavior during the uniaxial compressive strength tests.Full field strain measurement enables this digital method to examine local strains near cracks at any point,a very useful tool for studying material deformation behavior.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006 and 11272233)the National Key Basic Research and Development Program of China(Grant No.2012CB720101)
文摘The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.
基金the financial support from the National Natural Science Foundation of China (Grants 11672153, 11232008, and 11227801)
文摘Fused deposition modelling(FDM), a widely used rapid prototyping process, is a promising technique in manufacturing engineering. In this work, a method for characterizing elastic constants of FDM-fabricated materials is proposed. First of all, according to the manufacturing process of FDM, orthotropic constitutive model is used to describe the mechanical behavior. Then the virtual fields method(VFM) is applied to characterize all the mechanical parameters(Q, Q, Q, Q) using the full-field strain,which is measured by digital image correlation(DIC). Since the principal axis of the FDM-fabricated structure is sometimes unknown due to the complexity of the manufacturing process, a disk in diametrical compression is used as the load configuration so that the loading angle can be changed conveniently. To verify the feasibility of the proposed method, finite element method(FEM) simulation is conducted to obtain the strain field of the disk. The simulation results show that higher accuracy can be achieved when the loading angle is close to 30?. Finally, a disk fabricated by FDM was used for the experiment. By rotating the disk, several tests with different loading angles were conducted. To determine the position of the principal axis in each test, two groups of parameters(Q, Q, Q, Q) are calculated by two different groups of virtual fields. Then the corresponding loading angle can be determined by minimizing the deviation between two groups of the parameters. After that, the four constants(Q, Q, Q, Q) were determined from the test with an angle of 27?.
基金supported by the National Natural Science Foundation of China (10832003)the National Basic Research Program of China (613830202),the NSAF (11076032)
文摘Polymer bonded explosives (PBXs) are highly particle-filled composite materials.This paper experimentally studies the tensile deformation and fracture behavior of a PBX simulation by using the semi-circular bending (SCB) test.The deformation and fracture process of a pre-notched SCB sample with a random speckle pattern is recorded by a charge coupled device camera.The displacement and strain fields on the observed surface during the loading process are obtained by using the digital image correlation method.The crack opening displacement is calculated from the displacement fields,the initiation and propagation of the crack are analyzed.In addition,the damage evolution and fracture mechanisms of the SCB sample are analyzed according to the strain fields and the correlation coefficient fields at different loading steps.
基金supported by the National Natural Science Foundation of China (NSFC, Nos. 11002048, 10972072)the National Basic Research Program of China (973 Program, No. 2007CB714104)the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering at Hohai University (No. 2009585912)
文摘An experimental investigation on the mechanical mechanisms of fatigue micro-crack initiation and propagation of a nickel-based superalloy is presented. By coupling digital image correlation method and scanning electron microscope, the fatigue residual strain distribution at the grain scale has been obtained. The results showed that there is a trend of accumulation for the residual strain. Micro-cracks are more likely to initiate in or near the areas with particularly large residual strain, and propagate along the large-strain paths.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11562016 and 11672175)
文摘Uniaxial tension tests were conducted on single-edge-notched tensile specimens of pure molybdenum with a mesh grid pattern in front of the notch. A series of images of crack initialization and propagation with a distorted mesh grid pattern were obtained by means of in situ scanning electron microscopy. Strain fields around the crack tip were mapped successively using geometric phase analysis and digital image correlation techniques, and then compared with the predictions obtained through linear elastic fracture mechanics (LEFM). The comparison shows that the measured strain distribution ahead of the crack tip is consistent with the LEFM predictions of up to 25 μm from the crack tip.