期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 graph neural networks convolutional neural network deep learning dynamic multi-graph spatio-temporal
在线阅读 下载PDF
An Arrhythmia Intelligent Recognition Method Based on a Multimodal Information and Spatio-Temporal Hybrid Neural Network Model
2
作者 Xinchao Han Aojun Zhang +6 位作者 Runchuan Li Shengya Shen Di Zhang Bo Jin Longfei Mao Linqi Yang Shuqin Zhang 《Computers, Materials & Continua》 2025年第2期3443-3465,共23页
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to... Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness. 展开更多
关键词 Multimodal learning spatio-temporal hybrid graph convolutional network data imbalance ECG classification
在线阅读 下载PDF
Deep Bi-Directional Adaptive Gating Graph Convolutional Networks for Spatio-Temporal Traffic Forecasting
3
作者 Xin Wang Jianhui Lv +5 位作者 Madini O.Alassafi Fawaz E.Alsaadi B.D.Parameshachari Longhao Zou Gang Feng Zhonghua Liu 《Tsinghua Science and Technology》 2025年第5期2060-2080,共21页
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt... With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning. 展开更多
关键词 traffic forecasting spatio-temporal modeling graph convolutional networks(GCNs) adaptive gating
原文传递
Detection and Classification of Transmission Line Transient Faults Based on Graph Convolutional Neural Network 被引量:6
4
作者 Houjie Tong Robert C.Qiu +3 位作者 Dongxia Zhang Haosen Yang Qi Ding Xin Shi 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第3期456-471,共16页
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex... We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability. 展开更多
关键词 graph convolutional network(GCN) power transmission line fault detection and classification spatio-temporal data topology information
原文传递
Research on traffic flow prediction method based on adaptive multichannel graph convolutional neural networks
5
作者 Zhengzheng Xu Junhua Gu 《Advances in Engineering Innovation》 2024年第2期41-47,共7页
In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of exc... In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of excessive smoothing or neglecting initial node information as the layers of graph convolutional neural networks increase,thus affecting traffic prediction performance,this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks(AMGCN).The model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data,introduces a mixed skip propagation graph convolutional neural network model,which retains the original node states and selectively acquires outputs of convolutional layers,thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow.Finally,the output is fed into Long Short-Term Memory networks to capture temporal correlations.Comparative experiments on two real datasets validate the effectiveness of the proposed model. 展开更多
关键词 traffic flow prediction spatio-temporal correlations graph convolutional neural network adaptive adjacency matrix
在线阅读 下载PDF
Spatio-temporal orediction of terrorist attacks based on GCN-LSTM
6
作者 Yingjie Du Ning Ding Hongyu Lv 《Journal of Safety Science and Resilience》 2025年第2期186-195,共10页
Terrorist attacks represent a significant threat to national order,social stability,and economic security.Accurate prediction of such attacks is a critical task for casualty reduction,enhanced decision-making,and opti... Terrorist attacks represent a significant threat to national order,social stability,and economic security.Accurate prediction of such attacks is a critical task for casualty reduction,enhanced decision-making,and optimal resource distribution in counter-terrorism efforts.This paper introduces an innovative spatio-temporal fusion framework that combines graph convolutional network(GCN)with long short-term memory(LSTM)models.By capturing and merging spatio-temporal features from relevant events,the proposed GCN-LSTM model achieves remarkable accuracy in predicting terrorist attacks.The experimental results demonstrate outstanding perfor-mance,with the model attaining minimal RMSE and MAE values of 0.037 and 0.031,respectively,surpassing all baseline models(LSTM,GCN,and CNN-LSTM-Transformer).Through its effective interpretation of complex spatio-temporal patterns underlying terrorist attacks,our model substantially enhances the predictive accuracy across diverse time horizons.These findings carry crucial implications for enhancing counter-terrorism strategies. 展开更多
关键词 Terrorist attacks spatio-temporal prediction graph convolutional networks Long short-termmemory COUNTER-TERRORISM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部