A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear r...A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear resistance,and many other critical properties.However,at present a comprehensive and robust map correlating different properties in particle-reinforced composites is much lacking.In this work,an industrial grade AZ91 magnesium alloy reinforced with hard SiC and soft fly ash particles(with 3 vol.%each),has been prepared using stir casting followed by hot extrusion at 325℃with a ratio of 21.5.Microstructure of the hybrid composite was characterized using optical and scanning electron microscopes.The composite exhibited a reduction in average grain size from 13.6 to 7.1μm,concomitantly an increase in Vickers hardness from 73 to 111 HV.The tension-compression yield asymmetry ratios of the unreinforced alloy and hybrid composite were 1.165 and 0.976,respectively indicating higher yield strength for the composite under compressive load.The composite exhibited 76%improvement in damping capacity under time sweep mode,and 28%improvement at 423 K under temperature sweep mode.The tribological characteristics of the composite under dry sliding conditions at sliding speeds and loads in the range of 0.5 to 1.5 m s^(-1)and 10 to 30 N,respectively showed higher wear resistance than the unreinforced alloy.The composite showed 23%improvement in sliding wear resistance at a load of 20 N and a speed of 1 m s^(-1).Finally,efforts have been made to understand the influence of one property on the other by developing statistical property correlation maps from the properties obtained in this study and from the literature.These maps are expected to help in the design of hybrid Metal Matrix Composites for a variety of targeted applications in different sectors.展开更多
This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of...This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.展开更多
Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In ad...Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining.展开更多
The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory....The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.展开更多
Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recen...Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.展开更多
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope...In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.展开更多
The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent...The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves.展开更多
High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitr...High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.展开更多
Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with ...Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.展开更多
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep...Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.展开更多
Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and ...Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.展开更多
To improve the corrosion resistance of biodegradable Mg alloys,WE43 alloys were implanted with Fe,Ti,Zn and Zr ions at the same implantation dose.The surface morphology,valence state of elements,nano-hardness(NH),elas...To improve the corrosion resistance of biodegradable Mg alloys,WE43 alloys were implanted with Fe,Ti,Zn and Zr ions at the same implantation dose.The surface morphology,valence state of elements,nano-hardness(NH),elastic modulus(EM),degradation rate and in vitro cell experiments of the modified WE43 alloys were systematically studied.A modified layer composed of Mg,MgO,the implanted elements and their oxides was formed on the modified alloys.Since high-speed metal ions caused severe surface lattice damage,the surface hardness of the substrate considerable increased.Electrochemical tests demonstrated a substantial enhancement in the corrosion resistance of the modified alloys via the implantation of Ti and Zr ions,resulting in a reduction of the corrosion current density to 88.1±9.9 and 15.6±11.4μA cm^(−2),respectively,compared with the implantation of Fe and Zn ions.Biocompatibility tests showed that the implantation of Fe,Ti,Zn and Zr ions enhanced the anticoagulant and hemolytic resistance of the WE43 alloy.All surface-modified samples showed negligible cytotoxicity(0-1)at 12.5%extract concentration.Moreover,the alloys implanted with Fe,Ti and Zn ions significantly promoted proliferation of human umbilical vein endothelial cells(HUVEC)compared with the unmodified alloy.The results demonstrate that Ti ion implantation is the best choice for WE43 alloy modification to achieve outstanding corrosion resistance and biocompatibility.展开更多
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni...Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.展开更多
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L...Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.展开更多
Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and capro...Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.展开更多
For nickel-based superalloys with medium volume-fractionγʹphase(20%-40%),dual or multi-stage aging treatments are usually conducted to generate a microstructure containing the multimodal distri-bution ofγʹfor a bala...For nickel-based superalloys with medium volume-fractionγʹphase(20%-40%),dual or multi-stage aging treatments are usually conducted to generate a microstructure containing the multimodal distri-bution ofγʹfor a balance of strength and plasticity.In the present study,the microstructure and high-temperature properties of a novel cast nickel-based superalloy K4800 were investigated after being sub-jected to three heat treatments(HT)procedures,namely HT1:1180℃/4 h+1090℃/2 h+800℃/16 h,HT2:1180℃/4 h+1060℃/2 h+800℃/16 h and HT3:1180℃/4 h+800℃/16 h.It was found that the sub-solvus aging treatments at 1090 and 1060℃ precipitated sub-micron-sized(∼300 nm)primaryγʹphase which enhanced the ductility during 800℃ tensile(the total elongation of T1,T2,and T3 sam-ples were 6.75%,7.3%,and 3.25%,respectively)without evidently impairing the strength.After careful microstructure observation and deformation mechanism analysis,the enhancement of elongation was ra-tionalized that the precipitation of the sub-micron-sized primaryγʹphase decreased the volume-fraction and size of the nanometer-sizedγʹphase which was precipitated at 800℃,and simultaneously,pro-moted the dislocation movement by suppressing the non-planar slip.However,an excessive amount of the sub-micron-sized primaryγʹphase led to a faster ripening process of the nanometer-sizedγʹduring creep,which decreased the creep life at 800℃/430 MPa(T1:125 h,T2:199 h,and T3:198 h).Based on this,we monitored the number density of nanometer-sizedγʹphase coexisting with different amounts of largeγʹduring creep.An area fraction less than 7%of the sub-micron-sizedγʹphase was considered to have little detrimental effect on the creep life of K4800 alloy,which corresponded to a sub-solvus temperature range about 1080-1090℃.展开更多
The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of...The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of the precipitated phases,more Cr entered theκphase and a small amount of Cr solubilized in the matrix,which increase the hardness of theκand matrix and decrease the potential difference between theκand matrix.NAB alloy with Cr shows high erosion-corrosion resistance at high flow rate conditions,due to its lower phase potential difference and higher surface hardness.At the flow rate of 3 m·s^(-1),the corrosion rate is 0.076 mm·year^(-1),which is~20%lower than that of the unadded Cr sample.Moreover,the corrosion product film contains Cr_(2)O_(3)and Cr^(3+),which improves the densification of the film and raises alloy’s corrosion resistance with Cr addition.The combination of mechanical and corrosion resistant properties may qualify this alloy as a potential candidate material for sustainable and safe equipment.展开更多
To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compress...To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.展开更多
This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential ther...This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.展开更多
It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size...It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.展开更多
文摘A combination of hard(SiCP)and soft(fly ash)particulate reinforcements could be a strategy to enhance combination of multiple properties of Magnesium and its alloys which otherwise suffer from low stiffness,low wear resistance,and many other critical properties.However,at present a comprehensive and robust map correlating different properties in particle-reinforced composites is much lacking.In this work,an industrial grade AZ91 magnesium alloy reinforced with hard SiC and soft fly ash particles(with 3 vol.%each),has been prepared using stir casting followed by hot extrusion at 325℃with a ratio of 21.5.Microstructure of the hybrid composite was characterized using optical and scanning electron microscopes.The composite exhibited a reduction in average grain size from 13.6 to 7.1μm,concomitantly an increase in Vickers hardness from 73 to 111 HV.The tension-compression yield asymmetry ratios of the unreinforced alloy and hybrid composite were 1.165 and 0.976,respectively indicating higher yield strength for the composite under compressive load.The composite exhibited 76%improvement in damping capacity under time sweep mode,and 28%improvement at 423 K under temperature sweep mode.The tribological characteristics of the composite under dry sliding conditions at sliding speeds and loads in the range of 0.5 to 1.5 m s^(-1)and 10 to 30 N,respectively showed higher wear resistance than the unreinforced alloy.The composite showed 23%improvement in sliding wear resistance at a load of 20 N and a speed of 1 m s^(-1).Finally,efforts have been made to understand the influence of one property on the other by developing statistical property correlation maps from the properties obtained in this study and from the literature.These maps are expected to help in the design of hybrid Metal Matrix Composites for a variety of targeted applications in different sectors.
文摘This paper reports distinct spatio-spectral properties of Zen-meditation EEG (electroencephalograph), compared with resting EEG, by implementing unsupervised machine learning scheme in clustering the brain mappings of centroid frequency (BMFc). Zen practitioners simultaneously concentrate on the third ventricle, hypothalamus and corpora quadrigemina touniversalize all brain neurons to construct a <i>detached</i> brain and gradually change the normal brain traits, leading to the process of brain-neuroplasticity. During such tri-aperture concentration, EEG exhibits prominent diffuse high-frequency oscillations. Unsupervised self-organizing map (SOM), clusters the dataset of quantitative EEG by matching the input feature vector Fc and the output cluster center through the SOM network weights. Input dataset contains brain mappings of 30 centroid frequencies extracted from CWT (continuous wavelet transform) coefficients. According to SOM clustering results, resting EEG is dominated by global low-frequency (<14 Hz) activities, except channels T7, F7 and TP7 (>14.4 Hz);whereas Zen-meditation EEG exhibits globally high-frequency (>16 Hz) activities throughout the entire record. Beta waves with a wide range of frequencies are often associated with active concentration. Nonetheless, clinic report discloses that benzodiazepines, medication treatment for anxiety, insomnia and panic attacks to relieve mind/body stress, often induce <i>beta buzz</i>. We may hypothesize that Zen-meditation practitioners attain the unique state of mindfulness concentration under optimal body-mind relaxation.
基金National MCF Energy R&D Program(2019YFE03100400)。
文摘Ag-Cu-In-Ti low-temperature filler was used to braze the diamond and copper,and the effects of brazing temperature and soaking time on the microstructure and mechanical properties of the joints were investigated.In addition,the joint formation mechanism was discussed,and the correlation between joint microstructure and mechanical performance was established.Results show that adding appropriate amount of In into the filler can significantly reduce the filler melting point and enhance the wettability of filler on diamond.When the brazing temperature is 750°C and the soaking time is 10 min,a uniformly dense braze seam with excellent metallurgical bonding can be obtained,and its average joint shear strength reaches 322 MPa.The lower brazing temperature can mitigate the risk of diamond graphitization and also reduce the residual stresses during joining.
基金Funded by National Key R&D Program of China(No.2021YFB3802300)the National Natural Science Foundation of China(No.52171045)the Joint Fund(No.8091B022108)。
文摘The mechanical and thermodynamic properties of W-Ti alloys(including W_(15)Ti_(1),W_(14)Ti_(2),W_(12)Ti_(4) and W_(8)Ti_(8) alloys)were investigated by the first-principles approach based on density functional theory.The results indicate that W-Ti alloys except W_(8)Ti_(8) are thermodynamically stable.The modulus and hardness of W-Ti alloys are smaller than those of pure tungsten and gradually decrease with increasing Ti concentration.However,their B/G ratios and Poisson's ratios exceed those of pure tungsten,suggesting that the introduction of Ti decreases the mechanical strength while enhancing the ductility of W-Ti alloys.The thermal expansion coefficients for W-Ti alloys all surpass those of pure tungsten,indicating that the introduction of titanium exacerbates the thermal expansion behavior of W-Ti alloys.Nevertheless,elevated pressure has the capacity to suppress the thermal expansion tendencies in titanium-doped tungsten alloys.This study offers theoretical insights for the design of nuclear materials by exploring the mechanical and thermodynamic properties of W-Ti alloys.
基金the National Natural Science Foundation of China(No.52165026)。
文摘Irregular bone scaffolds fabricated using the Voronoi tessellation method resemble the morphology and properties of human cancellous bones.This has become a prominent topic in bone tissue engineering research in recent years.However,studies on the radial-gradient design of irregular bionic scaffolds are limited.Therefore,this study aims to develop a radial-gradient structure similar to that of natural long bones,enhancing the development of bionic bone scaffolds.A novel gradient method was adopted to maintain constant porosity,control the seed site-specific distribution within the irregular porous structure,and vary the strut diameter to generate radial gradients.The irregular scaffolds were compared with four conventional scaffolds(cube,pillar BCC,vintiles,and diamond)in terms of permeability,stress concentration characteristics,and mechanical properties.The results indicate that the radial-gradient irregular porous structure boasts the widest permeability range and superior stress distribution compared to conventional scaffolds.With an elastic modulus ranging from 4.20 GPa to 22.96 GPa and a yield strength between 68.37 MPa and 149.40 MPa,it meets bone implant performance requirements and demonstrates significant application potential.
基金supported by the National Natural Science Foundation of China(Nos.42171108 and 42101136)Sichuan Science and Technology Program(Nos.2024NSFSC2007 and2025YFHZ0273)Natural Science Starting Project of SWPU(No.2024QHZ029)。
文摘In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content.
基金supported by the National Natural Sci-ence Foundation of China[No.51564032]Yunnan Provin-cial Department of Education Science Research Fund Project[KKPH202132005]the Analysis and Testing Founda-tion of Kunming University of Science and Technology[2022M20212130086].
文摘The performances of magnesium alloys remain insufficient to further enhance the application potential of ultralight magnesium alloys.In this work,a Mg-8Li-3Y-2Zn alloy was prepared through vacuum melting and subsequent heat treatment at 300,450,and 500°C.The material properties of the resulting samples were assessed through microstructural observation,tensile testing,electrical conductivity measurements,and electromagnetic shielding effectiveness(EMI-SE)testing.The influence of the Mg-8Li-3Y-2Zn alloy microstructure on its mechanical and electromagnetic shielding properties in different states was investigated.It was found that the as-cast alloy containsα-Mg,β-Li,Mg_(3)Zn_(3)Y_(2),and Mg_(12)ZnY phases.Following heat treatment at 500℃(HT500),the blockα-Mg phase transformedfine needle-shapes,its tensile strength increased to 263.7 MPa,and its elongation reached 45.3%.The mechanical properties of the alloy were significantly improved by the synergistic effects imparted by the needle-shapedα-Mg phase,solid solution strengthening,and precipitation strengthening.The addition of Y and Zn improved the EMI-SE of Mg-8Li-1Zn alloy,wherein the HT500 sample exhibits the highest SE,maintaining a value of 106.7–76.9 dB in the frequency range of 30–4500 MHz;this performance has rarely been reported for electromagnetically shielded alloys.This effect was mainly attributed to the multiple reflections of electromagnetic waves caused by the severe impedance mismatch of the abundant phase boundaries,which were in turn provided by the dual-phase(α/β)and secondary phases.Furthermore,the presence of nano-precipitation was also believed to enhance the absorption of electromagnetic waves.
基金supported by the National Science Fund for Distinguished Young Scholars of China(No.52025014)Zhejiang Provincial Natural Science Foundation of China(Nos.LZJWY23E090001 and LD24E010003)the Natural Science Foundation of Ningbo(No.2022J305).
文摘High-entropy materials possess high hardness and strong wear resistance,yet the key bottleneck for their practical applications is the poor corrosion resistance in harsh environments.In this work,the high-entropy nitride(HEN)coatings of(MoNbTaTiZr)1-x Nx(x=0-0.47)were fabricated using a hybrid di-rect current magnetron sputtering technique.The research focus was dedicated to the effect of nitrogen content on the microstructure,mechanical and electrochemical properties.The results showed that the as-deposited coatings exhibited a typical body-centered cubic(BCC)structure without nitrogen,while the amorphous matrix with face-centered cubic(FCC)nanocrystalline grain was observed at x=0.17.Further increasing x in the range of 0.35-0.47 caused the appearance of polycrystalline FCC phase in structure.Compared with the MoNbTaTiZr metallic coating,the coating containing nitrogen favored the high hard-ness around 13.7-32.4 GPa,accompanied by excellent tolerance both against elastic and plastic deforma-tion.Furthermore,such N-containing coatings yielded a low corrosion current density of about 10−8-10−7 A/cm^(2) and high electrochemical impedance of 10^(6)Ωcm^(2) in 3.5 wt.%NaCl solution,indicating the supe-rior corrosion resistance.The reason for the enhanced electrochemical behavior could be ascribed to the spontaneous formation of protective passive layers over the coating surface,which consisted of the domi-nated multi-elemental oxides in chemical stability.Particularly,noted that the(MoNbTaTiZr)_(0.83) N0.17 coat-ing displayed the highest hardness of 32.4±2.6 GPa and H/E ratio at 0.09,together with remarkable cor-rosion resistance,proposing the strongest capability for harsh-environmental applications required both good anti-wear and anti-corrosion performance.
基金National Natural Science Foundation of China(52275349)Key Research and Development Program of Shandong Province(2021ZLGX01)。
文摘Friction stir lap welding of AA2195 Al-Li alloy and Ti alloy was conducted to investigate the formation,microstructure,and mechanical properties of the joints.Results show that under different welding parameters,with the decrease in welding heat input,the weld surface is smoother.The Ti/Al joint interface is flat without obvious Ti and Al mixed structure,and the hook structure is not formed under optimal parameters.Due to the enhanced breaking effect of the stirring head,the hook structural defects and intermetallic compounds are more likely to form at the Ti/Al interface at high rotational speed of 1000 r/min,thereby deteriorating the mechanical properties of joints.Decreasing the heat input is beneficial to hardness enhancement of the aluminum alloy in the weld nugget zone.Under the optimal parameters of rotation speed of 800 r/min and welding speed of 120 mm/min,the maximum tensile shear strength of joint is 289 N/mm.
基金support from CAS Project for Young Scientists in Basic Research(YSBR-025)and the Technology Innovation(RCJJ-145-24-39)R.P.Guo acknowledges the financial support from the National Natural Science Foundation of China(No.52401104)+1 种基金the Fundamental Research Program of Shanxi Province(No.202203021221072)the China Postdoctoral Science Foundation(No.2024M753298).
文摘Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204000).
文摘Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management.
基金supported by National Natural Science Foundation of China(52271117)Educational Commission of Hunan Province of China(23A0107)High Technology Research and Development Program of Hunan Province of China(2022GK4038).
文摘To improve the corrosion resistance of biodegradable Mg alloys,WE43 alloys were implanted with Fe,Ti,Zn and Zr ions at the same implantation dose.The surface morphology,valence state of elements,nano-hardness(NH),elastic modulus(EM),degradation rate and in vitro cell experiments of the modified WE43 alloys were systematically studied.A modified layer composed of Mg,MgO,the implanted elements and their oxides was formed on the modified alloys.Since high-speed metal ions caused severe surface lattice damage,the surface hardness of the substrate considerable increased.Electrochemical tests demonstrated a substantial enhancement in the corrosion resistance of the modified alloys via the implantation of Ti and Zr ions,resulting in a reduction of the corrosion current density to 88.1±9.9 and 15.6±11.4μA cm^(−2),respectively,compared with the implantation of Fe and Zn ions.Biocompatibility tests showed that the implantation of Fe,Ti,Zn and Zr ions enhanced the anticoagulant and hemolytic resistance of the WE43 alloy.All surface-modified samples showed negligible cytotoxicity(0-1)at 12.5%extract concentration.Moreover,the alloys implanted with Fe,Ti and Zn ions significantly promoted proliferation of human umbilical vein endothelial cells(HUVEC)compared with the unmodified alloy.The results demonstrate that Ti ion implantation is the best choice for WE43 alloy modification to achieve outstanding corrosion resistance and biocompatibility.
基金financial support from the Na-tional Natural Science Foundation of China(No.52231006)National Key Research and Development Program of China(No.2017YFB0702003)the National Natural Science Foundation of China(No.51871217).
文摘Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs.
基金supported by the National Key R&D Plan Program of China(No.2021YFB3400800)Henan Key Research and Development Program(No.231111241000)+1 种基金the Joint Fund of Henan Province Science and Technology R&D Program(No.225200810026)Zhongyuan Scholar Workstation Funded Program(No.224400510025).
文摘Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented.
基金financially supported by the Beijing Natural Science Foundation,China (No.JQ21028)the National Natural Science Foundation of China (Nos.52311530070,52278326,and 52004015)+2 种基金the Major National Science and Technology Project for Deep Earth,China (No.2024ZD1003805)the Project from PetroChina RIPED:the Study on the evolution law of Mineral Structure and Rock Mechanical Properties Under Ultra-High Temperature Conditions (No.2022-KFKT-02)the Fundamental Research Funds for the Central Universities of China (No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB)。
文摘Low-to medium-maturity oil shale resources display substantial reserves, offering promising prospects for in-situ conversion inChina. Investigating the evolution of the mechanical properties of the reservoir and caprock under in-situ high-temperature and confine-ment conditions is of considerable importance. Compared to conventional mechanical experiments on rock samples after high-temperat-ure treatment, in-situ high-temperature experiments can more accurately characterize the behavior of rocks in practical engineering,thereby providing a more realistic reflection of their mechanical properties. In this study, an in-situ high-temperature triaxial compressiontesting machine is developed to conduct in-situ compression tests on sandstone at different temperatures(25, 200, 400, 500, and 650℃)and confining pressures(0, 10, and 20 MPa). Based on the experimental results, the temperature-dependent changes in compressivestrength, peak strain, elastic modulus, Poisson's ratio, cohesion, and internal friction angle are thoroughly analyzed and discussed. Resultsindicate that the mass of sandstone gradually decreases as the temperature increases. The thermal conductivity and thermal diffusivity ofsandstone exhibit a linear relationship with temperature. Peak stress decreases as the temperature rises, while it increases with higher con-fining pressures. Notably, the influence of confining pressure on peak stress diminishes at higher temperatures. Additionally, as the tem-perature rises, the Poisson's ratio of sandstone decreases. The internal friction angle also decreases with increasing temperature, with 400℃ acting as the threshold temperature. Interestingly, under uniaxial conditions, the damage stress of sandstone is less affected by tem-perature. However, when the confining pressure is 10 or 20 MPa, the damage stress decreases as the temperature increases. This study en-hances our understanding of the influence of in-situ high-temperature and confinement conditions on the mechanical properties of sand-stone strata. The study also provides valuable references and experimental data that support the development of low-to medium-maturityoil shale resources.
文摘For nickel-based superalloys with medium volume-fractionγʹphase(20%-40%),dual or multi-stage aging treatments are usually conducted to generate a microstructure containing the multimodal distri-bution ofγʹfor a balance of strength and plasticity.In the present study,the microstructure and high-temperature properties of a novel cast nickel-based superalloy K4800 were investigated after being sub-jected to three heat treatments(HT)procedures,namely HT1:1180℃/4 h+1090℃/2 h+800℃/16 h,HT2:1180℃/4 h+1060℃/2 h+800℃/16 h and HT3:1180℃/4 h+800℃/16 h.It was found that the sub-solvus aging treatments at 1090 and 1060℃ precipitated sub-micron-sized(∼300 nm)primaryγʹphase which enhanced the ductility during 800℃ tensile(the total elongation of T1,T2,and T3 sam-ples were 6.75%,7.3%,and 3.25%,respectively)without evidently impairing the strength.After careful microstructure observation and deformation mechanism analysis,the enhancement of elongation was ra-tionalized that the precipitation of the sub-micron-sized primaryγʹphase decreased the volume-fraction and size of the nanometer-sizedγʹphase which was precipitated at 800℃,and simultaneously,pro-moted the dislocation movement by suppressing the non-planar slip.However,an excessive amount of the sub-micron-sized primaryγʹphase led to a faster ripening process of the nanometer-sizedγʹduring creep,which decreased the creep life at 800℃/430 MPa(T1:125 h,T2:199 h,and T3:198 h).Based on this,we monitored the number density of nanometer-sizedγʹphase coexisting with different amounts of largeγʹduring creep.An area fraction less than 7%of the sub-micron-sizedγʹphase was considered to have little detrimental effect on the creep life of K4800 alloy,which corresponded to a sub-solvus temperature range about 1080-1090℃.
基金supported by Beijing Nova Program(No.20230484371)the National Key Research and Development Program of China(No.2021YFB3700700).
文摘The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of the precipitated phases,more Cr entered theκphase and a small amount of Cr solubilized in the matrix,which increase the hardness of theκand matrix and decrease the potential difference between theκand matrix.NAB alloy with Cr shows high erosion-corrosion resistance at high flow rate conditions,due to its lower phase potential difference and higher surface hardness.At the flow rate of 3 m·s^(-1),the corrosion rate is 0.076 mm·year^(-1),which is~20%lower than that of the unadded Cr sample.Moreover,the corrosion product film contains Cr_(2)O_(3)and Cr^(3+),which improves the densification of the film and raises alloy’s corrosion resistance with Cr addition.The combination of mechanical and corrosion resistant properties may qualify this alloy as a potential candidate material for sustainable and safe equipment.
基金supported by the National Natural Science Foundation of China(52104133,52304227)the Natural Science Foundation of Hunan Province(2021JJ40465,2023JJ40548)the Opening Foundation of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC20KF03).
文摘To investigate the effect of saturation on the storage-dissipation properties and failure characteristics of red sandstone,as well as the energy mechanism of rockburst prevention by water,a series of uniaxial compression and uniaxial loading–unloading tests were conducted under five saturation levels.The effect of saturation on the mechanical properties and elastic energy density was analyzed,and a method for obtaining peak energy density was proposed.The effect of saturation on the energy evolution was examined,and the energy mechanism of water in preventing rockburst was revealed.The results indicate that an increase in saturation of red sandstone decreases the input energy density,elastic energy density,dissipated energy density,peak strength and peak strain;the compaction phase of the stress–strain curve becomes shorter;the failure mode transitions from X-conjugate oblique shear to single oblique shear;the variation in the debris ejection trajectory is as follows:radiation→X-ray→oblique upward parabola→horizontal parabola→oblique downward parabola;the degree of failure intensity and fragmentation is decreased gradually.Elastic energy density is interconnected with both saturation and stress but independent of the loading path.Saturation exhibits a dual effect on the energy storage property,i.e.,increasing saturation increases the energy storage efficiency and reduces the energy storage capacity.The ratio of peak elastic energy density to peak input energy density remains constant irrespective of saturation levels.Water prevents rockburst by decreasing the energy storage capacity of surrounding rock,alleviating the stress of surrounding rock to reduce energy storage,and elevating the energy release threshold of high-energy surrounding rock.The findings of this study contribute to understanding the effect of water on rock failure from an energy perspective,as well as provide theoretical guidance for rockburst prevention by water in deep tunnels.
基金the support from Jinhua Sanhuan Welding Materials Company LimitedSchool of Materials Science and Engineering,Nanjing University of Science and Technology.
文摘This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value.
基金supported by the National Natural Science Foundation of China (Grant Nos.12202294 and 12022208)the Project funded by China Postdoctoral Science Foundation (Grant No.2022M712243)the Fundamental Research Funds for the Central Universities (Grant No.2023SCU12098).
文摘It is well known that coarse-grained super-elastic NiTi shape memory alloys(SMAs)exhibit localized rather than homogeneous martensite transformation(MT),which,however,can be strongly influenced by either internal size(grain size,GS)or the external size(geometric size).The coupled effect of GS and geometric size on the functional properties has not been clearly understood yet.In this work,the super-elasticity,one-way,and stress-assisted two-way shape memory effects of the polycrystalline NiTi SMAs with different aspect ratios(length/width for the gauge section)and different GSs are investigated based on the phase field method.The coupled effect of the aspect ratio and GS on the functional properties is adequately revealed.The simulated results indicate that when the aspect ratio is lower than about 4:1,the stress biaxiality and stress heterogeneity in the gauge section of the sample become more and more obvious with decreasing the aspect ratio,which can significantly influence the microstructure evolution in the process involving external stress.Therefore,the corresponding functional property is strongly dependent on the aspect ratio.With decreasing the GS and the aspect ratio(to be lower than 4:1),both the aspect ratio and GS can affect the MT or martensite reorientation in each grain and the interaction among grains.Thus,due to the strong internal constraint(i.e.,the constraint of grain boundary)and the external constraint(i.e.,the constraint of geometric boundary),the capabilities of the functional properties of NiTi SMAs are gradually weakened and highly dependent on these two factors.