The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively popu...The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively population data with other data including natural resources, environment, society and economy, build 1km GRIDs of natural resources reserves per person, population density and other economic and environmental data, which are necessary to the national management and macro adjustment and control of natural resources and dynamic monitoring of population. In order to establish population information system serving national decision making, three steps ought to be followed:1) establishing complete geographical spatial data foundation infrastructure including the establishment of electric map of residence with high resolution using topographical map with large scale and high resolution satellite remote sensing data, the determination of attribute information of housing and office buildings, and creating complete set of attribute database and rapid data updating; 2) establishing complete census systems including improving the transformation efficiency from census data to digital database and strengthening the link of census database and geographical spatial database, meanwhile, the government should attach great importance to the establishment and integration of population migration database; 3) considering there is no GIS software specially serving the analysis and management of population data, a practical approach is to add special modules to present software system, which works as a bridge actualizing the digitization and spatialization of population geography research.展开更多
By using the observation data of drought,storm and hail in Dalian in recent 30 years,the spatialization of major agriculture meteorological disasters were carried out by means of cokriging and plate smooth slice splin...By using the observation data of drought,storm and hail in Dalian in recent 30 years,the spatialization of major agriculture meteorological disasters were carried out by means of cokriging and plate smooth slice spline method.Based on the 1:250 000 geographical information data in Dalian City,major meteorological disasters were spatially analyzed by using ArcMap,and the thematic map overlaying disaster distribution and crop information was made.Taking the distribution of hail disaster and crop yield for example,the application of spatialization method of agriculture meteorological disasters was elaborated.The results could provide decision basis for the establishment of disaster prevention and reduction and the optimization of crop distribution in Dalian.展开更多
Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( ...Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.展开更多
Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization met...Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques.Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity.The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods.Furthermore,this paper introduces the prototyping tool Geo-Scape,which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity,by making use of a kernel density estimation technique and on the landscape "smoothness" metaphor.A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data,by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity.展开更多
In this paper the application of spatialization technology on metadata quality check and updating was dis-cussed. A new method based on spatialization was proposed for checking and updating metadata to overcome the de...In this paper the application of spatialization technology on metadata quality check and updating was dis-cussed. A new method based on spatialization was proposed for checking and updating metadata to overcome the defi-ciency of text based methods with the powerful functions of spatial query and analysis provided by GIS software. Thismethod employs the technology of spatialization to transform metadata into a coordinate space and the functions ofspatial analysis in GIS to check and update spatial metadata in a visual environment. The basic principle and technicalflow of this method were explained in detail, and an example of implementation using ArcMap of GIS software wasillustrated with a metadata set of digital raster maps. The result shows the new method with the support of interactionof graph and text is much more intuitive and convenient than the ordinary text based method, and can fully utilize thefunctions of GIS spatial query and analysis with more accuracy and efficiency.展开更多
Population spatialization is widely used for spatially downscaling census population data to finer-scale.The core idea of modern population spatialization is to establish the association between ancillary data and pop...Population spatialization is widely used for spatially downscaling census population data to finer-scale.The core idea of modern population spatialization is to establish the association between ancillary data and population at the administrative-unit-level(AUlevel)and transfer it to generate the gridded population.However,the statistical characteristic of attributes at the pixel-level differs from that at the AU-level,thus leading to prediction bias via the cross-scale modeling(i.e.scale mismatch problem).In addition,integrating multi-source data simply as covariates may underutilize spatial semantics,and lead to incorrect population disaggregation;while neglecting the spatial autocorrelation of population generates excessively heterogeneous population distribution that contradicts to real-world situation.To address the scale mismatch in downscaling,this paper proposes a Cross-Scale Feature Construction(CSFC)method.More specifically,by grading pixel-level attributes,we construct the feature vector of pixel grade proportions to narrow the scale differences in feature representation between AU-level and pixel-level.Meanwhile,fine-grained building patch and mobile positioning data are utilized to adjust the population weighting layer generated from POI-density-based regression modeling.Spatial filtering is furtherly adopted to model the spatial autocorrelation effect of population and reduce the heterogeneity in population caused by pixel-level attribute discretization.Through the comparison with traditional feature construction method and the ablation experiments,the results demonstrate significant accuracy improvements in population spatialization and verify the effectiveness of weight correction steps.Furthermore,accuracy comparisons with WorldPop and GPW datasets quantitatively illustrate the advantages of the proposed method in fine-scale population spatialization.展开更多
Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other...Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding...As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.展开更多
Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analy...Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.展开更多
Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Si...Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been s...Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.展开更多
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(...Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.展开更多
Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable developm...Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.展开更多
文摘The spatialization of population of counties in China is significant. Firstly, we can gain the estimated values of population density adaptive to different kinds of regions. Secondly, we can integrate effectively population data with other data including natural resources, environment, society and economy, build 1km GRIDs of natural resources reserves per person, population density and other economic and environmental data, which are necessary to the national management and macro adjustment and control of natural resources and dynamic monitoring of population. In order to establish population information system serving national decision making, three steps ought to be followed:1) establishing complete geographical spatial data foundation infrastructure including the establishment of electric map of residence with high resolution using topographical map with large scale and high resolution satellite remote sensing data, the determination of attribute information of housing and office buildings, and creating complete set of attribute database and rapid data updating; 2) establishing complete census systems including improving the transformation efficiency from census data to digital database and strengthening the link of census database and geographical spatial database, meanwhile, the government should attach great importance to the establishment and integration of population migration database; 3) considering there is no GIS software specially serving the analysis and management of population data, a practical approach is to add special modules to present software system, which works as a bridge actualizing the digitization and spatialization of population geography research.
文摘By using the observation data of drought,storm and hail in Dalian in recent 30 years,the spatialization of major agriculture meteorological disasters were carried out by means of cokriging and plate smooth slice spline method.Based on the 1:250 000 geographical information data in Dalian City,major meteorological disasters were spatially analyzed by using ArcMap,and the thematic map overlaying disaster distribution and crop information was made.Taking the distribution of hail disaster and crop yield for example,the application of spatialization method of agriculture meteorological disasters was elaborated.The results could provide decision basis for the establishment of disaster prevention and reduction and the optimization of crop distribution in Dalian.
基金supported by the Special Scientific Research Fund of China Earthquake Administration(201308018-5,201108002)
文摘Population and housing grid data spatialization hased on 340 grid samples ( 1 kmx 1 kin) is used in- stead of regional statistical data to simulate the population and housing distribution data of Yunnan Province ( 1 km×1 kin) for rapid loss assessment ibr the Jinggu Ms6.6 earthquake. The resuhs indicate that the method reflects the actual population and housing distribution and that the assessment results are eredihle. The method can be used to quickly provide spatial orientation disaster information after an earthquake.
文摘Recently,the expertise accumulated in the field of geovisualization has found application in the visualization of abstract multidimensional data,on the basis of methods called spatialization methods.Spatialization methods aim at visualizing multidimensional data into low-dimensional representational spaces by making use of spatial metaphors and applying dimension reduction techniques.Spatial metaphors are able to provide a metaphoric framework for the visualization of information at different levels of granularity.The present paper makes an investigation on how the issue of granularity is handled in the context of representative examples of spatialization methods.Furthermore,this paper introduces the prototyping tool Geo-Scape,which provides an interactive spatialization environment for representing and exploring multidimensional data at different levels of granularity,by making use of a kernel density estimation technique and on the landscape "smoothness" metaphor.A demonstration scenario is presented next to show how Geo-Scape helps to discover knowledge into a large set of data,by grouping them into meaningful clusters on the basis of a similarity measure and organizing them at different levels of granularity.
基金Project 40301042 supported by Natural Science Foundation of China
文摘In this paper the application of spatialization technology on metadata quality check and updating was dis-cussed. A new method based on spatialization was proposed for checking and updating metadata to overcome the defi-ciency of text based methods with the powerful functions of spatial query and analysis provided by GIS software. Thismethod employs the technology of spatialization to transform metadata into a coordinate space and the functions ofspatial analysis in GIS to check and update spatial metadata in a visual environment. The basic principle and technicalflow of this method were explained in detail, and an example of implementation using ArcMap of GIS software wasillustrated with a metadata set of digital raster maps. The result shows the new method with the support of interactionof graph and text is much more intuitive and convenient than the ordinary text based method, and can fully utilize thefunctions of GIS spatial query and analysis with more accuracy and efficiency.
基金National Natural Science Foundation of China[Grant Nos.42090010,U20A2091,41971349,and 41930107]National Key R&D Program of China[Grant Nos.2018YFC0809800 and 2017YFB0503704].
文摘Population spatialization is widely used for spatially downscaling census population data to finer-scale.The core idea of modern population spatialization is to establish the association between ancillary data and population at the administrative-unit-level(AUlevel)and transfer it to generate the gridded population.However,the statistical characteristic of attributes at the pixel-level differs from that at the AU-level,thus leading to prediction bias via the cross-scale modeling(i.e.scale mismatch problem).In addition,integrating multi-source data simply as covariates may underutilize spatial semantics,and lead to incorrect population disaggregation;while neglecting the spatial autocorrelation of population generates excessively heterogeneous population distribution that contradicts to real-world situation.To address the scale mismatch in downscaling,this paper proposes a Cross-Scale Feature Construction(CSFC)method.More specifically,by grading pixel-level attributes,we construct the feature vector of pixel grade proportions to narrow the scale differences in feature representation between AU-level and pixel-level.Meanwhile,fine-grained building patch and mobile positioning data are utilized to adjust the population weighting layer generated from POI-density-based regression modeling.Spatial filtering is furtherly adopted to model the spatial autocorrelation effect of population and reduce the heterogeneity in population caused by pixel-level attribute discretization.Through the comparison with traditional feature construction method and the ablation experiments,the results demonstrate significant accuracy improvements in population spatialization and verify the effectiveness of weight correction steps.Furthermore,accuracy comparisons with WorldPop and GPW datasets quantitatively illustrate the advantages of the proposed method in fine-scale population spatialization.
文摘Alzheimer’s disease(AD)is the most common form of dementia.In addition to the lack of effective treatments,there are limitations in diagnostic capabilities.The complexity of AD itself,together with a variety of other diseases often observed in a patient’s history in addition to their AD diagnosis,make deciphering the molecular mechanisms that underlie AD,even more important.Large datasets of single-cell RNA sequencing,single-nucleus RNA-sequencing(snRNA-seq),and spatial transcriptomics(ST)have become essential in guiding and supporting new investigations into the cellular and regional susceptibility of AD.However,with unique technology,software,and larger databases emerging;a lack of integration of these data can contribute to ineffective use of valuable knowledge.Importantly,there was no specialized database that concentrates on ST in AD that offers comprehensive differential analyses under various conditions,such as sex-specific,region-specific,and comparisons between AD and control groups until the new Single-cell and Spatial RNA-seq databasE for Alzheimer’s Disease(ssREAD)database(Wang et al.,2024)was introduced to meet the scientific community’s growing demand for comprehensive,integrated,and accessible data analysis.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
文摘As an advanced device for observing atmospheric winds,the spaceborne Doppler Asymmetric Spatial Heterodyne(DASH)interferometer also encounters challenges associated with phase distortion,par-ticularly in limb sounding scenarios.This paper discusses interferogram modeling and phase distortion cor-rection techniques for spaceborne DASH interferometers.The modeling of phase distortion interferograms with and without Doppler shift for limb observation was conducted,and the effectiveness of the analytical expression was verified through numerical simulation.The simulation results indicate that errors propagate layer by layer while using the onion-peeling inversion algorithm to handle phase-distorted interferograms.In contrast,the phase distortion correction algorithm can achieve effective correction.This phase correction method can be successfully applied to correct phase distortions in the interferograms of the spaceborne DASH interferometer,providing a feasible solution to enhance its measurement accuracy.
基金Under the auspices of National Natural Science Foundation of China(No.42371192)Natural Science Foundation of Hunan Province(No.2023JJ30100)Social Science Foundation of Hunan Province(No.23ZDAJ023,23YBA133)。
文摘Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.
基金supported by the Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic(No.21YJCZH099)the National Natural Science Foundation of China(Nos.41401089 and 41741014)the Science and Technology Project of Sichuan Province(No.2023NSFSC1979).
文摘Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
基金National Natural Science Foundation of China(Nos.4210144242394063).
文摘Since the release of ChatGPT in late 2022,Generative Artificial Intelligence(GAI)has gained widespread attention because of its impressive capabilities in language comprehension,reasoning,and generation.GAI has been successfully applied across various aspects(e.g.,creative writing,code generation,translation,and information retrieval).In cartography and GIS,researchers have employed GAI to handle some specific tasks,such as map generation,geographic question answering,and spatiotemporal data analysis,yielding a series of remarkable results.Although GAI-based techniques are developing rapidly,literature reviews of their applications in cartography and GIS remain relatively limited.This paper reviews recent GAI-related research in cartography and GIS,focusing on three aspects:①map generation,②geographical analysis,and③evaluation of GAI’s spatial cognition abilities.In addition,the paper analyzes current challenges and proposes future research directions.
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金supported by the Open Fund of the Laboratory for Earth Surface Processes,Ministry of Education,Peking University,Beijing,China,and the Cultivation Fund Program for Excellent Dissertation in Fujian Normal University,China(No.LWPYS202315)the Research Start-up Fund of Fujian Normal University,China(No.Y0720304X13).
文摘Fifty agricultural soil samples collected from Fuzhou,southeast China,were first investigated for the occurrence,distribution,and potential risks of twelve organophosphate esters(OPEs).The total concentration of OPEs(ΣOPEs)in soil ranged from 1.33 to 96.5 ng/g dry weight(dw),with an average value of 17.1 ng/g dw.Especially,halogenated-OPEs were the predominant group with amean level of 9.75 ng/g dw,and tris(1-chloro-2-propyl)phosphate(TCIPP)was the most abundant OPEs,accounting for 51.1%ofΣOPEs.The concentrations of TCIPP andΣOPEs were found to be significantly higher(P<0.05)in soils of urban areas than those in suburban areas.In addition,the use of agricultural plastic films and total organic carbon had a positive effect on the occurrence of OPE in this study.The positive matrix factorization model suggested complex sources of OPEs in agricultural soils from Fuzhou.The ecological risk assessment demonstrated that tricresyl phosphate presented a medium risk to land-based organisms(0.1≤risk quotient<1.0).Nevertheless,the carcinogenic and noncarcinogenic risks for human exposure to OPEs through soil ingestion and dermal absorption were negligible.These findings would facilitate further investigations into the pollution management and risk control of OPEs.
基金Under the auspices of the National Natural Science Foundation of China(No.42301470,42171389)。
文摘Scientifically understanding the evolution of urbanization and analysing the coupling mechanism of human-land systems are important foundations for solving spatial conflicts and promoting regional sustainable development.This study analyzed the spatiotemporal evolution and landscape pattern change of construction land in the Yangtze River Delta(YRD)region from 1990 to 2018 by integrating Geographical Information System(GIS)spatial analysis and landscape pattern indices,and revealed its driving mechanism by XGBoost and SHapley Additive ex Planations(SHAP).Moreover,we compared the disparities in the core driving factors for construction land evolution in cities with diverse development orientations within the YRD region.Results show that:1)development intensity of construction land continued to increase from 7.54%in 1990 to 13.44%in 2018,primarily by occupying farmland.The landscape fragmentation of construction land in the YRD region decreased,and landscape dominance increased.Spatially,the eastern part of the YRD exhibits a high degree of spatial agglomeration of construction land,whereas the western part shows a high degree of fragmentation,revealing distinct spatial gradient differentiation characteristics.The landscape dominance of the construction land in the eastern region of the YRD is higher than that in the western and northern regions.2)Transportation and infrastructure exert the highest contribution rate on development intensity changes of construction land in the YRD.The industrial structure significantly influences the conversion of farmland to construction land.Additionally,infrastructure plays a crucial role in shaping the spatial agglomeration patterns of construction land.Population distribution is the dominant factor determining the regularity of the landscape shape of construction land.3)The core driving factors for the development intensity of construction land in central cities primarily lies in transportation,whereas for non-central cities,besides transportation,the year-end balance of per capita savings deposits of urban and rural residents also play a significant role.The area change of construction land occupying farmland in central and non-central cities is mainly driven by industrial structure and economic level,respectively.This study informs refined spatial optimization and regional high-quality integrated development.