Objective: To determine whether permutation scan statistics was more efficient in finding prospective spatial-temporal outbreaks for cutaneous leishmaniasis(CL) or for malaria in Fars province, Iran in 2016. Methods: ...Objective: To determine whether permutation scan statistics was more efficient in finding prospective spatial-temporal outbreaks for cutaneous leishmaniasis(CL) or for malaria in Fars province, Iran in 2016. Methods: Using time-series data including 29 177 CL cases recorded during 2010-2015 and 357 malaria cases recorded during 2010-2015, CL and malaria cases were predicted in 2016. Predicted cases were used to verify if they followed uniform distribution over time and space using space-time analysis. To testify the uniformity of distributions, permutation scan statistics was applied prospectively to detect statistically significant and non-significant outbreaks. Finally, the findings were compared to determine whether permutation scan statistics worked better for CL or for malaria in the area. Prospective permutation scan modeling was performed using SatScan software. Results: A total of 5 359 CL and 23 malaria cases were predicted in 2016 using time-series models. Applied timeseries models were well-fitted regarding auto correlation function, partial auto correlation function sample/model, and residual analysis criteria(Pv was set to 0.1). The results indicated two significant prospective spatial-temporal outbreaks for CL(P<0.5) including Most Likely Clusters, and one non-significant outbreak for malaria(P>0.5) in the area. Conclusions: Both CL and malaria follow a space-time trend in the area, but prospective permutation scan modeling works better for detecting CL spatial-temporal outbreaks. It is not far away from expectation since clusters are defined as accumulation of cases in specified times and places. Although this method seems to work better with finding the outbreaks of a high-frequency disease; i.e., CL, it is able to find non-significant outbreaks. This is clinically important for both high-and low-frequency infections; i.e., CL and malaria.展开更多
The program construction process is based on rigorous mathematical reasoning,which leads to a fully correct algorithmic program via step-by-step refinement of the program specifications.The existing program constructi...The program construction process is based on rigorous mathematical reasoning,which leads to a fully correct algorithmic program via step-by-step refinement of the program specifications.The existing program construction methods'refinement process is partly based on individual subjective speculation and analysis,which lacks a precise guidance method.Meanwhile,efficiency factors have usually been ignored in the construction process,and most of the constructed abstract programs cannot be run directly by machines.In order to solve these problems,a novel program construction method for the sequence statistical class algorithms based on bidirectional scan induction is proposed in this paper.The method takes into account the efficiency factor and thus improves the Morgan's refinement calculus.Furthermore,this paper validates the method's feasibility using an efficiency-sensitive sequential statistics class algorithm as a program construction example.The method proposed in this paper realizes the correctness construction process from program specifications to efficient executable programs.展开更多
The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sust...The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.展开更多
In the present study a new structural health monitoring (SHM) technique isproposed as well as a new damage index based on 2-D error statistics. The proposedtechnique combines the electromechanical impedance technique ...In the present study a new structural health monitoring (SHM) technique isproposed as well as a new damage index based on 2-D error statistics. The proposedtechnique combines the electromechanical impedance technique (EMI) which is based onthe use of piezoelectric Lead Zirconate Titanate (PZT) patches and Scanning LaserDoppler Vibrometry (SLDV) for damage detection purposes of concrete structures andearly age monitoring. Typically the EMI technique utilizes the direct and inversepiezoelectric effect of a PZT patch attached to a host structure via an impedance analyzerthat is used for both the actuation and sensing the response of the PZT-Host structuresystem. In the proposed technique the attached PZTs are actuated via a function generatorand the PZT-Host structure response is obtained by a Scanning Laser DopplerVibrometer. Spectrums of oscillation velocity of the surface of the attached PZTs verticalto the laser beam versus frequency are obtained and are evaluated for SHM purposes.This damage detection approach also includes the use of a damage index denoted asECAR (Ellipse to Circle Area Ratio) based on 2-D error statistics and is compared to theRoot Mean Square Deviation (RMSD) damage index commonly used in SHMapplications. Experimental results include ascending uniaxial compressive load ofconcrete cubic specimens, ascending three point bending of reinforced concrete beamspecimens and early age monitoring of concrete. Results illustrate the efficiency of theproposed technique in damage detection as well as early age monitoring as, in the firstcase, both severity and location of damage can be determined by examining the values ofdamage indices for each damaged state and in the early age monitoring case damageindices follow the strength gain curve.展开更多
文摘Objective: To determine whether permutation scan statistics was more efficient in finding prospective spatial-temporal outbreaks for cutaneous leishmaniasis(CL) or for malaria in Fars province, Iran in 2016. Methods: Using time-series data including 29 177 CL cases recorded during 2010-2015 and 357 malaria cases recorded during 2010-2015, CL and malaria cases were predicted in 2016. Predicted cases were used to verify if they followed uniform distribution over time and space using space-time analysis. To testify the uniformity of distributions, permutation scan statistics was applied prospectively to detect statistically significant and non-significant outbreaks. Finally, the findings were compared to determine whether permutation scan statistics worked better for CL or for malaria in the area. Prospective permutation scan modeling was performed using SatScan software. Results: A total of 5 359 CL and 23 malaria cases were predicted in 2016 using time-series models. Applied timeseries models were well-fitted regarding auto correlation function, partial auto correlation function sample/model, and residual analysis criteria(Pv was set to 0.1). The results indicated two significant prospective spatial-temporal outbreaks for CL(P<0.5) including Most Likely Clusters, and one non-significant outbreak for malaria(P>0.5) in the area. Conclusions: Both CL and malaria follow a space-time trend in the area, but prospective permutation scan modeling works better for detecting CL spatial-temporal outbreaks. It is not far away from expectation since clusters are defined as accumulation of cases in specified times and places. Although this method seems to work better with finding the outbreaks of a high-frequency disease; i.e., CL, it is able to find non-significant outbreaks. This is clinically important for both high-and low-frequency infections; i.e., CL and malaria.
基金Supported by the National Natural Science Foundation of China(62262031)the Jiangxi Provincial Natural Science Foundation(20232BAB202010)+1 种基金the Science and Technology Project of Education Department of Jiangxi Province(GJJ210307,GJJ2200302)the Cultivation Project for Academic and Technical Leader in Major Disciplines in Jiangxi Province(20232BCJ22013)。
文摘The program construction process is based on rigorous mathematical reasoning,which leads to a fully correct algorithmic program via step-by-step refinement of the program specifications.The existing program construction methods'refinement process is partly based on individual subjective speculation and analysis,which lacks a precise guidance method.Meanwhile,efficiency factors have usually been ignored in the construction process,and most of the constructed abstract programs cannot be run directly by machines.In order to solve these problems,a novel program construction method for the sequence statistical class algorithms based on bidirectional scan induction is proposed in this paper.The method takes into account the efficiency factor and thus improves the Morgan's refinement calculus.Furthermore,this paper validates the method's feasibility using an efficiency-sensitive sequential statistics class algorithm as a program construction example.The method proposed in this paper realizes the correctness construction process from program specifications to efficient executable programs.
基金National Key R&D Program of China,No.2017YFB0504102National Natural Science Foundation of China,No.41771537
文摘The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.
文摘In the present study a new structural health monitoring (SHM) technique isproposed as well as a new damage index based on 2-D error statistics. The proposedtechnique combines the electromechanical impedance technique (EMI) which is based onthe use of piezoelectric Lead Zirconate Titanate (PZT) patches and Scanning LaserDoppler Vibrometry (SLDV) for damage detection purposes of concrete structures andearly age monitoring. Typically the EMI technique utilizes the direct and inversepiezoelectric effect of a PZT patch attached to a host structure via an impedance analyzerthat is used for both the actuation and sensing the response of the PZT-Host structuresystem. In the proposed technique the attached PZTs are actuated via a function generatorand the PZT-Host structure response is obtained by a Scanning Laser DopplerVibrometer. Spectrums of oscillation velocity of the surface of the attached PZTs verticalto the laser beam versus frequency are obtained and are evaluated for SHM purposes.This damage detection approach also includes the use of a damage index denoted asECAR (Ellipse to Circle Area Ratio) based on 2-D error statistics and is compared to theRoot Mean Square Deviation (RMSD) damage index commonly used in SHMapplications. Experimental results include ascending uniaxial compressive load ofconcrete cubic specimens, ascending three point bending of reinforced concrete beamspecimens and early age monitoring of concrete. Results illustrate the efficiency of theproposed technique in damage detection as well as early age monitoring as, in the firstcase, both severity and location of damage can be determined by examining the values ofdamage indices for each damaged state and in the early age monitoring case damageindices follow the strength gain curve.