Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a partic...Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a particular period, there is a critical need to analyze the spatial-temporal patterns of migration. Using bicomponent trend mapping technique and interprovincial migration data during the periods 1985-1990, 1990-1995, 1995-2000, 2000- 2005, and 2005-2010 we analyze net-, in-, out-migration intensity, and their changes over time in this study. Strong spatial variations in migration intensity were found in China's interprovincial migration, and substantial increase in migration intensity was also detected in eastern China during 1985-2010. Eight key destinations are mostly located within the three rapidly growing economic zones of eastern China (Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei Metropolitan Region), and they are classified into three types: mature, emerging, and fluctuant origins, while most key origins are relatively undeveloped central and western provinces, which are exactly in accordance with China's economic development patterns. The results of bicomponent trend mapping indicate that, in a sense, the migration in the south was more active than the north over the last three decades. The result shows the new changing features of spatial-temporal patterns of China's interprovincial migration that Fan and Chen did not find out in their research. A series of social-economic changes including rural transformation, balanced regional development, and labor market changes should be paid more attention to explore China's future interprovincial migration.展开更多
Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal pa...Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly(P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend(P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change(which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence(likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.展开更多
The Manasarovar Basin in southern Tibet, which is considered a holy land in Buddhism, has drawn international academic attention because of its unique geographical environment. In this study, based on actual measureme...The Manasarovar Basin in southern Tibet, which is considered a holy land in Buddhism, has drawn international academic attention because of its unique geographical environment. In this study, based on actual measurements of major ion concentrations in 43 water samples collected during the years 2005 and 2012, we analyzed systemically the spatialtemporal patterns of water chemistry and its controlling factors in the lake and inflowing rivers. The results reveal that the water in the Manasarovar Basin is slightly alkaline, with a pH ranging between 7.4-7.9. The amounts of total dissolved solids (TDS) in lake and river waters are approximately 325.4 and 88.7 mg/l, respectively, lower than that in most of the surface waters in the Tibetan Plateau. Because of the long-term effect of evaporative crystallization, in the lake, Na^+ and HCO3^- have the highest concentrations, accounting for 46.8% and 86.8% of the total cation and anion content. However, in the inflowing rivers, the dominant ions are Ca^2+ and HCO3^-, accounting for 59.6% and 75.4% of the total cation and anion content. The water exchange is insufficient for such a large lake, resulting in a remarkable spatial variation of ion composition. There are several large inflowing rivers on the north side of the lake, in which the ion concentrations are significantly higher than that on the other side of the lake, with a TDS of 468.9 and 254.9 mg/l, respectively. Under the influence of complicated surroundings, the spatial variations in water chemistry are even more significant in the rivers, with upstreams exhibiting a higher ionic content. The molar ratio between (Ca^2++Mg^2+) and (Na^++K^+) is much higher than 1.0, revealing that the main source of ions in the waters is carbonate weathering. Although natural processes, such as rock weathering, are the major factors controlling main ion chemistry in the basin, in the future we need to pay more attention to the anthropogenic influence.展开更多
In this study, we developed an energy security evaluation model(ESEM) from three dimensions, energy supply-transport security, safety of energy utilization, and stability of political-socioeconomic environment, based ...In this study, we developed an energy security evaluation model(ESEM) from three dimensions, energy supply-transport security, safety of energy utilization, and stability of political-socioeconomic environment, based on the integrated application of subjective and objective weight allocation technique. Then the spatial-temporal evolution of global energy security pattern and its driving mechanism was analyzed with the method above, and the results are shown as follows:(1) since the 1990 s, the spatial patterns of global energy security have shown a deteriorating trend, with the growth of countries in at-risk type and relatively at-risk type.(2) The spatial distribution of countries with secure energy system shows a strong stability, and these countries are concentrated persistently in Western Europe and North America. The spatial evolution of countries with relatively secure energy system also presents a strong stability, which are mainly distributed in the periphery of the secure ones, namely Central and Southern Europe, South America and Eurasia, while countries with general energy system are mainly distributed in Asia, Africa and Southern Europe, and the spatial-temporal evolution of this type is the main cause for the deterioration of world energy security pattern. Countries with at-risk and relatively at-risk energy system are mainly concentrated in Africa, Asia, the Middle East and Eurasia, rendering spatial extension to the east and south.(3) In the past 20 years, the mechanism for world’s energy security pattern formation gradually transforms from the ‘unitary dimension dominated’ to the ‘binary dimension-dominated’, and the main factors influencing the global energy security pattern become more diverse.(4) In the pattern of world’s energy security, China’s performance on energy security has been the global average since the 1990 s, which shows a decreasing trend in safety of energy utilization dimension. Findings in this study can provide a reference for the government in terms of formulating strategic responses and policy options.展开更多
Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a be...Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a better understanding of the spatial-temporal patterns of urban expansion of Korla City, we explore the urban expansion characteristics of Korla City over the period 1995-2015 by employing Landsat TM/ETM+ images of 1995, 2000, 2005, 2010, and 2015. Urban land use types were classified using the supervised classification method in ENVI 4.5. Urban expansion indices, such as expansion area, expansion proportion, expansion speed, expansion intensity, compactness, and fractal dimension, were calculated. The spatial-temporal patterns and evolution process of the urban expansion (e.g., urban gravity center and its direction of movement) were then quantitatively analyzed. The results indicated that, over the past 25 years, the area and proportion of urban land increased substantially with an average annual growth rate of 15.18%. Farmland and unused land were lost greatly due to the urban expansion. This result might be attributable to the rapid population growth and the dramatic economic development in this area. The city extended to the southeast, and the urban gravity center shifted to the southeast as well by about 2118 m. The degree of urban compactness tended to decrease and the fractal dimension index tended to increase, indicating that the spatial pattern of Korla City was becoming loose, complex, and unstable. This study could provide a scientific reference for the studies on urban expansion of oasis cities in arid land.展开更多
Formation and evolution of rural settlement patterns in Lianzhou City,Guangdong Province were analyzed from the perspective of space and time,on the basis of its gazetteer and relevant historical data.The results show...Formation and evolution of rural settlement patterns in Lianzhou City,Guangdong Province were analyzed from the perspective of space and time,on the basis of its gazetteer and relevant historical data.The results show that Lianzhou was first founded in the sixth year of Yuanding Period of the Western Han Dynasty,and its development could be roughly classified into 6 stages according to the construction of south–north traffic lines and regional development progress,and it witnessed the fastest development in the Ming and Qing Dynasty.In terms of spatial distribution,rural settlements in the local area show spatial continuity,Lianzhou Town is the core of rural settlement growth in the city,and towns with the most concentrated rural settlements in all stages are located in central-west and northeast parts of the city,and those with lower density of rural settlements are mostly located in minority regions in the north and mountainous areas in the east.On the basis of the above facts,the paper studies the influence of natural geological conditions,immigrant,traffic,economic development and ethnic composition on the establishment and development of rural settlements in Lianzhou City.展开更多
Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effec...Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effective and environmentally friendly measure to sequester anthropogenic carbon emissions, which is significant for achieving carbon neutrality and curbing global climate change. This paper uses land use data and carbon density tables with the In VEST model to obtain a carbon storage distribution map of China. It further applies land use response elasticity coefficients, Theil index multi-stage nested decomposition, and spatial autocorrelation analysis to examine the spatial-temporal patterns, causes of changes, and evolution characteristics of carbon storage in terrestrial ecosystems from 1980 to 2020. The results show that the temporal changes in China's carbon storage generally present an inverted S-curve, with an initial rapid decline followed by a slower decrease. Spatially, it features high levels in the northeast, low levels in the northwest, and a uniform distribution in the central and southern regions.The disturbance of land use type changes on terrestrial ecosystem carbon storage has been effectively mitigated. The significant reduction in grassland area in the Southwest region is the main source of carbon storage loss during the study period, and the encroachment of construction land on arable land in large urban agglomerations is one of the important causes of carbon storage loss. The Theil index multi-stage nested decomposition results indicate that the overall difference in carbon storage in China has decreased, while differences among cities within provinces and among counties within cities have increased. The influence of natural factors on the distribution of carbon storage is weakening, whereas the impact of human activities is becoming more profound, enhancing its influence on the spatial distribution of carbon storage in China. From 1980 to 2000, the carbon density in coastal metropolises generally showed a declining trend. From 2000 to 2020, the carbon density in the central urban areas of eastern coastal city clusters gradually showed an upward trend and continued to expand outward, revealing to some extent the“Environmental Kuznets Curve” characteristic in the development process of urban carbon storage. Therefore, in future ecological construction, the government should fully consider the impact of land management planning on carbon storage in different regions, promote the efficient use and standardized management of land, and strive to cross the “Environmental Kuznets Curve” inflection point of carbon storage as soon as possible.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examine...Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examined.In this study,we apply two widely-used objective methods,the self-organizing map(SOM)and K-means clustering analysis,to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022.We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities.In the case of classifying six SWPs,the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods,and the difference in themean frequency of each SWP is less than 7%.The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature,lower cloud cover,relative humidity,and wind speed,and stronger subsidence compared to climatology mean.We find that during 2015-2022,the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 days/year,faster than the increases in the ozone exceedance days(3.0 days/year).The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6.In particular,the significant increase in ozone-favorable SWPs in 2022,especially the Subtropical High type which typically occurs in September,is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022.Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.展开更多
The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set inco...The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.展开更多
Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guang...Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.展开更多
BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have ...BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.展开更多
Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potentia...Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.展开更多
This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking an...This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optim...During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.展开更多
In contemporary China,some domestic films are deeply rooted in traditional Chinese culture,contributing to more and more excellent film&TV programs,among which,the styling inspired by animal patterns on Late Shang...In contemporary China,some domestic films are deeply rooted in traditional Chinese culture,contributing to more and more excellent film&TV programs,among which,the styling inspired by animal patterns on Late Shang Dynasty bronze ware has given strong vitality to the film&TV programs.This paper is intended to compile and understand the cultural value and artistic features of the patterns on Late Shang Dynasty bronze ware as well as its value in the traditional pattern application.It provides certain references regarding the role of film&TV styling in the inheritance and application of traditional patterns,if we analyze the cognition and status quo of the Late Shang Dynasty bronze ware patterns in the contemporary film&TV styling,and if we go deep into its artistic value and its application within such makeup design and identify the problems and laws in current design cases.Such analysis also provides a way of thinking for the application of traditional patterns in current film&TV costume design.展开更多
In July 2021,a catastrophic extreme precipitation(EP)event occurred in Henan Province,China,resulting in considerable human and economic losses.The synoptic pattern during this event is distinctive,characterized by th...In July 2021,a catastrophic extreme precipitation(EP)event occurred in Henan Province,China,resulting in considerable human and economic losses.The synoptic pattern during this event is distinctive,characterized by the presence of two typhoons and substantial water transport into Henan.However,a favorable synoptic pattern only does not guarantee the occurrence of heavy precipitation in Henan.This study investigates the key environmental features critical for EP under similar synoptic patterns to the 2021 Henan extreme event.It is found that cold clouds are better aggregated on EP days,accompanied by beneficial environment features like enhanced moisture conditions,stronger updrafts,and greater atmospheric instability.The temporal evolution of these environmental features shows a leading signal by one to three days.These results suggest the importance of combining the synoptic pattern and environmental features in the forecasting of heavy precipitation events.展开更多
Treelines are ecologically unique,fragile,and rich in natural resources.They harbour high species diversity and at the same time are under threat due to anthropogenic activities.Recognizing this,the present study has ...Treelines are ecologically unique,fragile,and rich in natural resources.They harbour high species diversity and at the same time are under threat due to anthropogenic activities.Recognizing this,the present study has been framed to document the patterns of species richness and diversity in the state of Himachal Pradesh,western Himalaya.A total of six treeline sites(three disturbed and three undisturbed)were identified for vegetation sampling.Trees,shrubs,and herbs were sampled at each site using nested plots of 10 m^(2),5 m^(2),and 1 m^(2),respectively.The study exhibits the rich diversity of treeline communities,the patterns of which varied between treeline sites.Altogether,221 species of vascular plants belonging to 47 families and 140 genera were recorded from the area.Amongst families,Asteraceae was the dominant family followed by Apiaceae and Ranunculaceae.The study also revealed the presence of threatened species like Aconitum heterophyllum,Angelica glauca,Bergenia stracheyi,Dactylorhiza hatagirea,Picrorhiza kurroa,and Trillium govanianum etc.at treeline.Moreover,species composition revealed high densities of Betula utilis followed by the under canopy of Rhododendron campanulatum and R.anthopogon at treeline sites.Overall,species richness of herbs,shrubs,and trees were higher at undisturbed site as compared to disturbed one.The diversity indices of herbs and shrubs varied significantly between treeline sites while that of trees was non-significant.At the same time,soil properties showed distinct patterns wherein pH and available nitrogen significantly varied between treeline sites.Present study provides detailed insights into the floristic and ecological aspects of treeline communities from the unexplored ecoregion of western Himalaya.The treelines in the area are anthropogenically depressed and continued land-use activities might result in habitat fragmentation and displacement of plant communities in the near future.展开更多
基金National Basic Research Program of China (973 Program), No.2012CB95570001 Key Research Program of the Chinese Academy of Sciences, No.KZZD-EW-06-04+1 种基金 National Natural Science Foundation of China, No.41301121 National Key Technologies R&D Program of China, No.2012BAJ15B02
文摘Migration plays an increasing role in China's economy since mobility rose and economic restructuring has proceeded during the last three decades. Given the background of most studies focusing on migration in a particular period, there is a critical need to analyze the spatial-temporal patterns of migration. Using bicomponent trend mapping technique and interprovincial migration data during the periods 1985-1990, 1990-1995, 1995-2000, 2000- 2005, and 2005-2010 we analyze net-, in-, out-migration intensity, and their changes over time in this study. Strong spatial variations in migration intensity were found in China's interprovincial migration, and substantial increase in migration intensity was also detected in eastern China during 1985-2010. Eight key destinations are mostly located within the three rapidly growing economic zones of eastern China (Pearl River Delta, Yangtze River Delta and Beijing-Tianjin-Hebei Metropolitan Region), and they are classified into three types: mature, emerging, and fluctuant origins, while most key origins are relatively undeveloped central and western provinces, which are exactly in accordance with China's economic development patterns. The results of bicomponent trend mapping indicate that, in a sense, the migration in the south was more active than the north over the last three decades. The result shows the new changing features of spatial-temporal patterns of China's interprovincial migration that Fan and Chen did not find out in their research. A series of social-economic changes including rural transformation, balanced regional development, and labor market changes should be paid more attention to explore China's future interprovincial migration.
基金National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010(No.STSN-04-01)
文摘Overwhelming water-deficiency conditions and an unbalanced water supply and demand have been major concerns of both the Chinese government and the general public during recent decades. Studying the spatial-temporal patterns and impact factors that influence water retention in China is important to enhance the management of water resources in China and other similar countries. We employed a revised Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST) model and regression analyses to investigate the water retention service in China. The results showed that the southeastern China generally performed much better than Northwest China in terms of the spatial distribution of water retention. In general, the efficacy of the water retention service in China increased from 2000 to 2014; although some areas still had a downward trend. Water retention service increased significantly(P < 0.05) in aggregate in the Qinghai-Tibet Plateau, and the Da Hinggan Mountains and Xiao Hinggan Mountains. However, the service in southwestern China showed a decreasing trend(P < 0.05), which would have significant negative impact on the downstream population. This study also showed that in China the changes in water retention service were primarily due to climate change(which could explain 83.49% of the total variance), with anthropogenic impact as a secondary influence(likewise the ecological programs and socioeconomic development could explain 9.47% and 1.06%, respectively). Moreover, the identification of water retention importance indicated that important areas conservation and selection based on downstream beneficiaries is vital for optimization protection of ecosystem services, and has practical significance for natural resources and ecosystem management.
基金National Natural Science Foundation of China, No.41190080 "Strategic Priority Research Program (B)" of the Chinese Academy of Sciences, No.XDB03030400 Acknowledgement The authors express the sincere gratitude to Dr. Liu Jian, Master Duan Rui, Master Dong Xiaohui for collection of the water samples during the year 2005, Prof. Liu Gaohuan and Ms Jiang Yadong for participation in the field investigation in the year 2012, to Editor Zhao Xin of the Journal of Geographical Sciences for the valuable suggestions which significantly improved the quality of this paper.
文摘The Manasarovar Basin in southern Tibet, which is considered a holy land in Buddhism, has drawn international academic attention because of its unique geographical environment. In this study, based on actual measurements of major ion concentrations in 43 water samples collected during the years 2005 and 2012, we analyzed systemically the spatialtemporal patterns of water chemistry and its controlling factors in the lake and inflowing rivers. The results reveal that the water in the Manasarovar Basin is slightly alkaline, with a pH ranging between 7.4-7.9. The amounts of total dissolved solids (TDS) in lake and river waters are approximately 325.4 and 88.7 mg/l, respectively, lower than that in most of the surface waters in the Tibetan Plateau. Because of the long-term effect of evaporative crystallization, in the lake, Na^+ and HCO3^- have the highest concentrations, accounting for 46.8% and 86.8% of the total cation and anion content. However, in the inflowing rivers, the dominant ions are Ca^2+ and HCO3^-, accounting for 59.6% and 75.4% of the total cation and anion content. The water exchange is insufficient for such a large lake, resulting in a remarkable spatial variation of ion composition. There are several large inflowing rivers on the north side of the lake, in which the ion concentrations are significantly higher than that on the other side of the lake, with a TDS of 468.9 and 254.9 mg/l, respectively. Under the influence of complicated surroundings, the spatial variations in water chemistry are even more significant in the rivers, with upstreams exhibiting a higher ionic content. The molar ratio between (Ca^2++Mg^2+) and (Na^++K^+) is much higher than 1.0, revealing that the main source of ions in the waters is carbonate weathering. Although natural processes, such as rock weathering, are the major factors controlling main ion chemistry in the basin, in the future we need to pay more attention to the anthropogenic influence.
基金National Natural Science Foundation of China,No.41671126,No.41171147Special Funds for Scientific Research Institutes from Science&Technology Department of Fujian Province,No.2016R1032-5
文摘In this study, we developed an energy security evaluation model(ESEM) from three dimensions, energy supply-transport security, safety of energy utilization, and stability of political-socioeconomic environment, based on the integrated application of subjective and objective weight allocation technique. Then the spatial-temporal evolution of global energy security pattern and its driving mechanism was analyzed with the method above, and the results are shown as follows:(1) since the 1990 s, the spatial patterns of global energy security have shown a deteriorating trend, with the growth of countries in at-risk type and relatively at-risk type.(2) The spatial distribution of countries with secure energy system shows a strong stability, and these countries are concentrated persistently in Western Europe and North America. The spatial evolution of countries with relatively secure energy system also presents a strong stability, which are mainly distributed in the periphery of the secure ones, namely Central and Southern Europe, South America and Eurasia, while countries with general energy system are mainly distributed in Asia, Africa and Southern Europe, and the spatial-temporal evolution of this type is the main cause for the deterioration of world energy security pattern. Countries with at-risk and relatively at-risk energy system are mainly concentrated in Africa, Asia, the Middle East and Eurasia, rendering spatial extension to the east and south.(3) In the past 20 years, the mechanism for world’s energy security pattern formation gradually transforms from the ‘unitary dimension dominated’ to the ‘binary dimension-dominated’, and the main factors influencing the global energy security pattern become more diverse.(4) In the pattern of world’s energy security, China’s performance on energy security has been the global average since the 1990 s, which shows a decreasing trend in safety of energy utilization dimension. Findings in this study can provide a reference for the government in terms of formulating strategic responses and policy options.
基金funded by the National Natural Science Foundation of China(41161063,41261090,41361043,41661036)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1603241)+2 种基金the Xinjiang Uygur Autonomous Region Science and Technology Support Project(201591101)the special fund of the Xinjiang Uygur Autonomous Region Key Laboratory(2014KL005,2016D03001)the Open Project Fund of the Key Laboratory of Oasis Ecology of the Education Ministry,Xinjiang University(040079)
文摘Cities provide spatial contexts for populations and economic activities. Determining the spatial-temporal patterns of urban expansion is of particular significance for regional sustainable development. To achieve a better understanding of the spatial-temporal patterns of urban expansion of Korla City, we explore the urban expansion characteristics of Korla City over the period 1995-2015 by employing Landsat TM/ETM+ images of 1995, 2000, 2005, 2010, and 2015. Urban land use types were classified using the supervised classification method in ENVI 4.5. Urban expansion indices, such as expansion area, expansion proportion, expansion speed, expansion intensity, compactness, and fractal dimension, were calculated. The spatial-temporal patterns and evolution process of the urban expansion (e.g., urban gravity center and its direction of movement) were then quantitatively analyzed. The results indicated that, over the past 25 years, the area and proportion of urban land increased substantially with an average annual growth rate of 15.18%. Farmland and unused land were lost greatly due to the urban expansion. This result might be attributable to the rapid population growth and the dramatic economic development in this area. The city extended to the southeast, and the urban gravity center shifted to the southeast as well by about 2118 m. The degree of urban compactness tended to decrease and the fractal dimension index tended to increase, indicating that the spatial pattern of Korla City was becoming loose, complex, and unstable. This study could provide a scientific reference for the studies on urban expansion of oasis cities in arid land.
基金Sponsored by Fundamental Research Funds for the Central Universities(GK201303006)National Natural Science Foundation of China(41171139)Key Projects of Humanities and Social Sciences Research Base of Guangdong Colleges and Universities(09JDXM84001)
文摘Formation and evolution of rural settlement patterns in Lianzhou City,Guangdong Province were analyzed from the perspective of space and time,on the basis of its gazetteer and relevant historical data.The results show that Lianzhou was first founded in the sixth year of Yuanding Period of the Western Han Dynasty,and its development could be roughly classified into 6 stages according to the construction of south–north traffic lines and regional development progress,and it witnessed the fastest development in the Ming and Qing Dynasty.In terms of spatial distribution,rural settlements in the local area show spatial continuity,Lianzhou Town is the core of rural settlement growth in the city,and towns with the most concentrated rural settlements in all stages are located in central-west and northeast parts of the city,and those with lower density of rural settlements are mostly located in minority regions in the north and mountainous areas in the east.On the basis of the above facts,the paper studies the influence of natural geological conditions,immigrant,traffic,economic development and ethnic composition on the establishment and development of rural settlements in Lianzhou City.
基金supported by the National Natural Science Foundation of China (Grant Nos.42121001,42371207)。
文摘Analyzing the changes in carbon storage in terrestrial ecosystems caused by land use changes is a crucial part of exploring the carbon cycle. In addition, enhancing carbon storage in terrestrial ecosystems is an effective and environmentally friendly measure to sequester anthropogenic carbon emissions, which is significant for achieving carbon neutrality and curbing global climate change. This paper uses land use data and carbon density tables with the In VEST model to obtain a carbon storage distribution map of China. It further applies land use response elasticity coefficients, Theil index multi-stage nested decomposition, and spatial autocorrelation analysis to examine the spatial-temporal patterns, causes of changes, and evolution characteristics of carbon storage in terrestrial ecosystems from 1980 to 2020. The results show that the temporal changes in China's carbon storage generally present an inverted S-curve, with an initial rapid decline followed by a slower decrease. Spatially, it features high levels in the northeast, low levels in the northwest, and a uniform distribution in the central and southern regions.The disturbance of land use type changes on terrestrial ecosystem carbon storage has been effectively mitigated. The significant reduction in grassland area in the Southwest region is the main source of carbon storage loss during the study period, and the encroachment of construction land on arable land in large urban agglomerations is one of the important causes of carbon storage loss. The Theil index multi-stage nested decomposition results indicate that the overall difference in carbon storage in China has decreased, while differences among cities within provinces and among counties within cities have increased. The influence of natural factors on the distribution of carbon storage is weakening, whereas the impact of human activities is becoming more profound, enhancing its influence on the spatial distribution of carbon storage in China. From 1980 to 2000, the carbon density in coastal metropolises generally showed a declining trend. From 2000 to 2020, the carbon density in the central urban areas of eastern coastal city clusters gradually showed an upward trend and continued to expand outward, revealing to some extent the“Environmental Kuznets Curve” characteristic in the development process of urban carbon storage. Therefore, in future ecological construction, the government should fully consider the impact of land management planning on carbon storage in different regions, promote the efficient use and standardized management of land, and strive to cross the “Environmental Kuznets Curve” inflection point of carbon storage as soon as possible.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金supported by the Guangdong Basic and Applied Basic Research project (No.2020B0301030004)the Key-Area Research and Development Program of Guangdong Province (No.2020B1111360003)+1 种基金the National Natural Science Foundation of China (No.42105103)the Guangdong Basic and Applied Basic Research Foundation (No.2022A1515011554).
文摘Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns(SWPs),however,the consistency of different classification methods is rarely examined.In this study,we apply two widely-used objective methods,the self-organizing map(SOM)and K-means clustering analysis,to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022.We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities.In the case of classifying six SWPs,the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods,and the difference in themean frequency of each SWP is less than 7%.The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature,lower cloud cover,relative humidity,and wind speed,and stronger subsidence compared to climatology mean.We find that during 2015-2022,the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 days/year,faster than the increases in the ozone exceedance days(3.0 days/year).The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6.In particular,the significant increase in ozone-favorable SWPs in 2022,especially the Subtropical High type which typically occurs in September,is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022.Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.
基金supported by the National Natural Science Foundation of China(No.U21B2062).
文摘The isolated fracture-vug systems controlled by small-scale strike-slip faults within ultra-deep carbonate rocks of the Tarim Basin exhibit significant exploration potential.The study employs a novel training set incorporating innovative fault labels to train a U-Net-structured CNN model,enabling effective identification of small-scale strike-slip faults through seismic data interpretation.Based on the CNN faults,we analyze the distribution patterns of small-scale strike-slip faults.The small-scale strike-slip faults can be categorized into NNW-trending and NE-trending groups with strike lengths ranging 200–5000 m.The development intensity of small-scale strike-slip faults in the Lower Yingshan Member notably exceeds that in the Upper Member.The Lower and Upper Yingshan members are two distinct mechanical layers with contrasting brittleness characteristics,separated by a low-brittleness layer.The superior brittleness of the Lower Yingshan Member enhances the development intensity of small-scale strike-slip faults compared to the upper member,while the low-brittleness layer exerts restrictive effects on vertical fault propagation.Fracture-vug systems formed by interactions of two or more small-scale strike-slip faults demonstrate larger sizes than those controlled by individual faults.All fracture-vug system sizes show positive correlations with the vertical extents of associated small-scale strike-slip faults,particularly intersection and approaching fracture-vug systems exhibit accelerated size increases proportional to the vertical extents.
基金National Social Science Foundation Program,No.22VRC163National Natural Science Foundation of China,No.42061043+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX24_1008Innovation Project of Guangxi Graduate Education,No.YCSW2024473。
文摘Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.
文摘BACKGROUND Addressing oculoplastic conditions in the preoperative period ensures both the safety and functional success of any ophthalmic procedure.Some oculoplastic conditions,like nasolacrimal duct obstruction,have been extensively studied,whereas others,like eyelid malposition and thyroid eye disease,have received minimal or no research.AIM To investigate the current practice patterns among ophthalmologists while treating concomitant oculoplastic conditions before any subspecialty ophthalmic intervention.METHODS A cross-sectional survey was disseminated among ophthalmologists all over India.The survey included questions related to pre-operative evaluation,anaesthetic and surgical techniques preferred,post-operative care,the use of adjunctive therapies,and patient follow-up patterns.RESULTS A total of 180 ophthalmologists responded to the survey.Most practitioners(89%)felt that the ROPLAS test was sufficient during pre-operative evaluation before any subspecialty surgery was advised.The most common surgical techniques employed were lacrimal drainage procedures(Dacryocystorhinostomy)(63.3%),eyelid malposition repair(36.9%),and ptosis repair(58.7%).Post-operatively,47.7%of respondents emphasized that at least a 4-week gap should be maintained after lacrimal drainage procedures and eyelid surgeries.Sixty-seven percent of ophthalmologists felt that topical anaesthetic procedures should be preferred while performing ocular surgeries in thyroid eye disease patients.CONCLUSION Approximately 50%of ophthalmologists handle prevalent oculoplastic issues themselves,seeking the expertise of an oculoplastic surgeon under particular conditions.Many ophthalmologists still favor using ROPLAS as a preliminary screening method before proceeding with cataract surgery.Eyelid conditions and thyroid eye disease are not as commonly addressed before subspecialty procedures compared to issues like nasolacrimal duct obstruction and periocular infections.
文摘Chaoshan drawnwork handkerchief design exhibits self-similarity and fractal characteristics due to their grid-based structure,overall symmetry,and the way local motifs reflect the whole pattern.To explore the potential of fractals in traditional textile design,a fractal-based generative framework was proposed for efficiently creating drawnwork patterns suitable for practical handicraft production.The research was initiated with an analysis of the structural composition of center,skeleton,and filler motifs extracted from a pattern sample library.Based on this hierarchical classification,the box-counting method was employed to calculate their respective fractal dimensions.Building on fractal art theory,generative algorithms,and studies on the application of Ultra Fractal,a Chaoshan drawnwork fractal design model was established.Using this model,51 drawnwork fractal patterns and 153 handkerchief patterns were generated.These patterns were subsequently applied in real-world production to validate the feasibility and value of fractal techniques in textile design.
基金Under the auspices of the National Natural Science Foundation of China(No.52268008)。
文摘This study focuses on urgent research on restoring and enhancing carbon storage capacity in the Beibu Gulf Urban Agglomer-ation of China,a key area in the‘Belt and Road’Initiative,which aligns with carbon peaking and neutrality goals.This research ana-lyzes the spatial characteristics of carbon metabolism from 2000 to 2020 and uses models to identify stable carbon sink areas,positive carbon flow corridors,and carbon sequestration nodes.The goal is to construct a carbon metabolism spatial security pattern(CMSSP)and propose territorial ecological restoration strategies under different development demand scenarios.The results show the following:1)in 2020,the study area’s carbon sink decreased by 8.29×10^(4) t C/yr compared with that in 2010 and by 10.83×10^(4) t C/yr compared with that in 2000.High-carbon sinks were found mainly in mountainous areas,whereas low-carbon sinks are concentrated in urban con-struction land,rural residential areas,and land margins.2)From 2000 to 2020,the spatial security pattern of carbon metabolism tended to be‘high in the middle of the east and west and low in the gulf.’In 2000,2010,and 2020,16 stable carbon sinks were identified.The carbon energy flow density in Guangxi was greater than that in Guangdong and Hainan,with positive carbon flow corridors located primarily in Guangxi and Guangdong.The number of carbon sequestration nodes remained stable at approximately 15,mainly in Guangxi and Hainan.3)Scenario simulations revealed that under the Nature-based mild restoration scenario,the carbon sink rate will reach 611.85×10^(4) t C/yr by 2030 and increase to 612.45×10^(4) t C/yr by 2060,with stable carbon sinks increasing to 18.In the restora-tion scenario based on Anti-globalization,the carbon sink will decrease from 610.24×10^(4) t C/yr in 2030 to 605.19×10^(4) t C/yr in 2060,with the disappearance of some positive carbon flow corridors and stable carbon sinks.Under the Human-based sustainable restoration scenario,the carbon sink area will decrease from 607.00×10^(4) t C/yr in 2030 to 596.39×10^(4) t C/yr in 2060,with carbon sink areas frag-menting and positive carbon flow corridors becoming less dense.4)On the basis of the current and predicted CMSSPs,this study ex-plores spatial ecological restoration strategies for high-carbon storage areas in bay urban agglomerations at four levels:the land control region,urban agglomeration structure system,carbon sink structure and bay structure control region.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金sponsored by the National Natural Science Foundation of China(Nos.52174002&52204008)the Heilongjiang Provincial Natural Science Foundation of China(No.LH2022E020).
文摘During horizontal well drilling,the interaction between drilling fluid and cuttings entering the annulus generates diverse flow patterns.These solid-liquid two-phase flow patterns must be accurately predicted to optimize the determination of hydraulic parameters and improve the efficiency of cuttings transport.Accordingly,this study identified flow patterns and conducted transition experiments under different inclination angles using a visualized wellbore annulus apparatus(120 mm outer diameter/73 mm inner diameter).Through direct visual observations,four primary flow patterns were systematically classified on the basis of the solid-liquid two-phase flow behaviors identified in the experiments:stable bed(SB),sand wave(SW),sand dune(SD),and bed load(BL)flows.The experimental data were then used to construct flow pattern maps with solid/liquid phases as axes,after which the transition boundaries between different flow patterns were established.The morphological characteristics and transition mechanisms of SB,SW,SD,and BL flows were systematically analyzed to develop three predictive models of the fluid dynamics principles governing these flow patterns’transitions:(1)A transition boundary model of SB and SW flows was established using Kelvin-Helmholtz stability,for which a stability analysis of solid-liquid two-phase flow in deviated and horizontal annuli was carried out.(2)A transition boundary model of SW and SD flows was constructed through an analysis of the geometric features of sand waves in the annuli,with the critical ratio of the average height of a cuttings bed to its height after erosion being 0.45.(3)A traditional critical velocity model was refined by adjusting the von Karman constant to account for the effect of solid volume concentration,yielding a boundary model for the transition of SW or SD flow into BL flow.All the models were experimentally validated.Finally,we integrated the models to develop a unified method for identifying and classifying the patterns typifying solid-liquid two-phase flow in deviated and horizontal annuli.
基金supported by the Education and Teaching Reform Program,Beijing Institute of Fashion Technology.
文摘In contemporary China,some domestic films are deeply rooted in traditional Chinese culture,contributing to more and more excellent film&TV programs,among which,the styling inspired by animal patterns on Late Shang Dynasty bronze ware has given strong vitality to the film&TV programs.This paper is intended to compile and understand the cultural value and artistic features of the patterns on Late Shang Dynasty bronze ware as well as its value in the traditional pattern application.It provides certain references regarding the role of film&TV styling in the inheritance and application of traditional patterns,if we analyze the cognition and status quo of the Late Shang Dynasty bronze ware patterns in the contemporary film&TV styling,and if we go deep into its artistic value and its application within such makeup design and identify the problems and laws in current design cases.Such analysis also provides a way of thinking for the application of traditional patterns in current film&TV costume design.
基金supported by the National Key Research and Development Pro-gram of China(Grant No.2022YFC3003902)the National Natu-ral Science Foundation of China(Grant Nos.42075146 and 42275006).
文摘In July 2021,a catastrophic extreme precipitation(EP)event occurred in Henan Province,China,resulting in considerable human and economic losses.The synoptic pattern during this event is distinctive,characterized by the presence of two typhoons and substantial water transport into Henan.However,a favorable synoptic pattern only does not guarantee the occurrence of heavy precipitation in Henan.This study investigates the key environmental features critical for EP under similar synoptic patterns to the 2021 Henan extreme event.It is found that cold clouds are better aggregated on EP days,accompanied by beneficial environment features like enhanced moisture conditions,stronger updrafts,and greater atmospheric instability.The temporal evolution of these environmental features shows a leading signal by one to three days.These results suggest the importance of combining the synoptic pattern and environmental features in the forecasting of heavy precipitation events.
基金the Ministry of Environment Forest and Climate Change and GB Pant National Institute of Himalayan Environment for providing financial assistance through the National Mission on Himalayan Studies (GAP-0199)
文摘Treelines are ecologically unique,fragile,and rich in natural resources.They harbour high species diversity and at the same time are under threat due to anthropogenic activities.Recognizing this,the present study has been framed to document the patterns of species richness and diversity in the state of Himachal Pradesh,western Himalaya.A total of six treeline sites(three disturbed and three undisturbed)were identified for vegetation sampling.Trees,shrubs,and herbs were sampled at each site using nested plots of 10 m^(2),5 m^(2),and 1 m^(2),respectively.The study exhibits the rich diversity of treeline communities,the patterns of which varied between treeline sites.Altogether,221 species of vascular plants belonging to 47 families and 140 genera were recorded from the area.Amongst families,Asteraceae was the dominant family followed by Apiaceae and Ranunculaceae.The study also revealed the presence of threatened species like Aconitum heterophyllum,Angelica glauca,Bergenia stracheyi,Dactylorhiza hatagirea,Picrorhiza kurroa,and Trillium govanianum etc.at treeline.Moreover,species composition revealed high densities of Betula utilis followed by the under canopy of Rhododendron campanulatum and R.anthopogon at treeline sites.Overall,species richness of herbs,shrubs,and trees were higher at undisturbed site as compared to disturbed one.The diversity indices of herbs and shrubs varied significantly between treeline sites while that of trees was non-significant.At the same time,soil properties showed distinct patterns wherein pH and available nitrogen significantly varied between treeline sites.Present study provides detailed insights into the floristic and ecological aspects of treeline communities from the unexplored ecoregion of western Himalaya.The treelines in the area are anthropogenically depressed and continued land-use activities might result in habitat fragmentation and displacement of plant communities in the near future.