To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to...To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.展开更多
The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evalua...The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value.展开更多
Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resou...Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.展开更多
To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and ge...To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.展开更多
Currently, the agricultural growth in developed countries mainly relies on the improvement of productivity, which is also the target for China. Accordingly, the purpose of this study was to describe the spatial-tempor...Currently, the agricultural growth in developed countries mainly relies on the improvement of productivity, which is also the target for China. Accordingly, the purpose of this study was to describe the spatial-temporal evolution pattern of agricultural productivity, to reveal changes in total factor productivity in 2ooo-2olo, and analyze the impact of these changes in northwestern Sichuan plateau, China. Using data envelopment analysis (DEA) and the Malmquist Index, an in-depth study was conducted on agricultural productivity and changes in total factor productivity of 31 counties in northwestern Sichuan plateau. Results indicated that: (1) geographically, counties with optimal efficiency were mainly located in the north of northwestern Sichuan plateau and those with the lowest efficiency, in the south; (2) relative to pure technical efficiency, scale efficiency was the dominant factor in determining agricultural productivity; (3) the redundancy rate of input factors in zolo was slightly lower than that in zooo, thereby indicating an improved utilization of input factors to a certain extent and a great potential for further improving such utilization; (4) during the 2ooo-2olo period, the agricultural total factor productivity had an average annual growth rate of 8.3%, but the growth rates in various regions differed widely; (5) technical progress was the dominant factor promoting the improvement of total factor oroductivitv inagriculture. The disparities in spatial distribution may be due to the differences of natural conditions, former level agricultural productivity between counties. The findings are valuable for the government to make sustainable development policies for agriculture and improving agricultural development in northwestern Sichuan plateau.展开更多
Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on th...Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.展开更多
Accessibility is an important tool</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;&qu...Accessibility is an important tool</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to evaluate the maturity of a regional traffic network structure</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> which </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">describes the traffic convenience in the traffic</span><span style="font-family:Verdana;"> network. </span><span style="font-family:Verdana;">The paper defines a new accessibility index by using the resident pop</span><span style="font-family:Verdana;">ulation weighted average value of the sum of inverse of the traveling time </span><span style="font-family:Verdana;">distance and time threshold coming from ordinary traffic network, and then uses this accessibility index to analyze the spatial-temporal characteristics of Henan highway network, as well as its evolution patterns from 2005 to 2020. The results show that with the expansion and improvement of Henan highway network, city accessibility level has been significantly improved, spatial convergence is obvious, the cities in the north central are always High-High aggregation area, the cities in the south are always Low-Low aggregation area, gradually forming the characteristics of Northwest high and Southeast low, relative balance between East and West. There is some non-conforming phenomenon in highway mileage growth and improvement of the city accessibility levels, but this situation is being weakened, the highway network layout is gradually rationalized, the spatial distribution of city accessibility and that of population are beginning to converge.展开更多
Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal duri...Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°.展开更多
The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis wa...The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.展开更多
Studying the agricultural spatial distribution characteristics of Jianghan Plain from 2000 to 2018 and its spatial-temporal transformation with ecological space and urban space is of great significance for optimizing ...Studying the agricultural spatial distribution characteristics of Jianghan Plain from 2000 to 2018 and its spatial-temporal transformation with ecological space and urban space is of great significance for optimizing the spatial structure of the country, enhancing the supply capacity of agricultural products, and ensuring food security. The research results show that during the period from 2000 to 2018, the agricultural spatial concentration in the area along the “Xiaogan-Jingzhou” link was relatively high, and the areas with large declines were mainly distributed in the flat areas between the Yangtze River and Han River;the space is continuously reduced by the occupation of ecological space and urban space, and ecological space and urban space have been improved respectively;agricultural space has been transformed into ecological space, and the largest urban space has been transformed. Ecological space has been transformed into agricultural space and urban space. Less urban space has been transformed into agricultural space and ecological space.展开更多
The Three-River Source Region is an important ecological security barrier in China.Revealing the spati-otemporal evolution characteristics of its landscape types and ecological risks is of great significance for promo...The Three-River Source Region is an important ecological security barrier in China.Revealing the spati-otemporal evolution characteristics of its landscape types and ecological risks is of great significance for promoting ecological restoration and landscape pattern optimization in the Three-River Source Region.Selecting the Three-River Source Region for a case study and applying the land-use data from four periods(the 1990,2000,2010,and 2020),we constructed a landscape ecological risk assessment model for the region based on the landscape pattern index.We then quantitatively assessed the ecological risks and determined the characteristics of their spa-tial-temporal evolution.The results showed that:(1)The overall landscape ecological risk in the Three-River Source Region tended to decrease from northwest to southeast,and the distribution of landscape ecological risk was closely related to the natural plateau zones and the changes in land cover.(2)From 1990 to 2020,the areas covered by grasslands,water bodies,croplands,and construction land in the Three-River Source Region increased,while the areas of woodlands and unused land decreased.The spatial-temporal changes in the ecological landscape risk were consistent with the characteristics of the changes in the landscape types.The areas categorized as highest,higher,medium,lower and lowest risk areas,while highest and higher risk areas decreased by 9.76%,medium risk areas increased by 1.03%,lower risk areas increased by 8.99%,and lowest risk areas decreased by 0.26%,respectively.(3)Overall,the Three-River Source Region was dominated by very low to medium ecological risk,the areas of which accounted for more than 70%of the entire study area.Overall ecological risks are decreasing,and there is positive spatial autocorrelation of landscape ecological risks in adjacent evaluation units.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
Against a background of deepened globalization, the socio-spatial distribution characteristics of the employed population are one of the important perspectives that reflect the impact of globalization on urban social ...Against a background of deepened globalization, the socio-spatial distribution characteristics of the employed population are one of the important perspectives that reflect the impact of globalization on urban social space. Based on data of the population census of Shanghai in 2000 and 2010, using location quotient and index of dissimilarity, this paper analyzes the residential differentiation evolution in Shanghai from 2000 to 2010. The results show that except the high-end service industry, the residential differentiation of the employees in the other three types of industries has intensified but is not serious. In addition, the proportion of employees in high-end service industry within the Middle Ring has increased, while that of employees in the middle-and low-end service industry beyond the Middle Ring has increased, which further proves that globalization has an increasingly obvious impact on the socio-spatial differentiation in Shanghai. However, the adjustment in spatial development made by the Shanghai municipal government in response to globalization makes the socio-spatial evolution of Shanghai greatly different from the suburbanization of social elites in the West.展开更多
Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role...Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.展开更多
基金supported by the Graduate Research and Innovation Project of Chongqing Normal University[Grant No.YKC23035],comprehensive evaluation,and driving factors of urban resilience in the Chengdu-Chongqing Economic Circle.
文摘To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.
文摘The purpose of this study was to find out the spatial-temporal rules and driving force of cultivated land quality in Henan Province in the last ten years. Agricultural land grading factor evaluation was used to evaluate the cultivated land quality of 2002 and 2012 in Henan Province, and to research the change laws. Method of correlation coefficient was employed to select the driving forces affecting cultivated land quality evolution. The results indicated that the cultivated land quality in Henan Province increased slightly in the last ten years in general, and in spatial there were unchanged regions, increased regions and decreased regions. The cultivated land quality in spatial presented the trend of good becoming better, bad becoming worse, which should be highly valued in cultivated land quality protection and management. Land development and consolidation projects had significant contributions to increasing the cultivated land quality. Driving forces between the sudden change regions and gradual change regions were significantly different. The paper concluded that the research on the spatial-temporal evolution and driving force of cultivated land quality based on cultivated land quality evolution had important academic significance and practical value.
基金financial support from the National Key Research and Development Program of China(2017YFC1502404)the National Natural Science Foundation of China(41601562 and 41761014)+1 种基金the China Institute of Water Resources and Hydropower Research Team Construction and Talent Development Project(JZ0145B752017)the Research Project for Young Teachers of Fujian Province,China(JAT160085)
文摘Evapotranspiration (ET) is the sum of soil or water body evaporation and plant transpiration from the earth surface and ocean to the atmosphere, and thus plays a significant role in regulating carbon and water resource cycles. The time-series data set from the remote sensing MOLDS product (MOD16) was used to study the spatial-temporal evolution of vegetation evapotranspiration in salinized areas during 2000-2014 by analyzing the variability, spatial patterns and Mann-Kendall (MK) nonparametric trends for the time series. The results indicate that inter-annual and intra-annual variations of ET across various vegetated areas show seasonal changes, with the abnormal months identified. The Cultivated land displays a greater degree of spatial heterogeneity and the spatial pattern of ET in the area covered by broadleaved deciduous forests corresponds to a higher ET rate and increased water consumption. Awidespread decline of ET is observed only in cultivated areas. However, agricultural cultivation doesn't worsen water shortage and soil salinization problems in the region, and water shortage problems are worsening for other vegetated areas. This research provides a basis of reference for the reasonable allocation of water resources and restructuring of vegetation patterns in salinized areas.
基金Under the auspices of National Natural Science Foundation of China(No.41401182,41501173)Youth Fund for Humanities and Social Sciences of the Ministry of Education of China(No.19YJC630177)+2 种基金Natural Science Foundation of Heilongjiang Province(No.LH2019D008)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2018194)Talent Introduction Project of Southwest University(No.SWU019020)。
文摘To comprehensively understand the law of urban-rural relationship and propose scientific measures of urban-rural coordinated development in Northeast China,this study uses the coupling coordination degree model and geographically and temporally weighted regression(GTWR)model to analyze the spatial-temporal patterns and the corresponding driving mechanisms of its urban-rural coordination since 1990.The results are as follows.First,the urban-rural coupling coordination degree in Northeast China was very low and improved slowly,but its stages of evolution is a good interpretation of the strategic arrangements of China's urbanization.Second,the urban-rural coupling coordination degree in Northeast China had spatial differences and was characterized by central polarization,converging on urban agglomeration,which was high in the south and low in the north.Moreover,the gap between the north and south weakened.Third,the spatial-temporal evolution of the urban-rural coordination relationship in Northeast China was influenced by pulling from the central cities,pushing from rural transformation,and government regulations.The influence intensity of the three mechanisms was weak,but the pulling from the central cities was stronger than that of the other two mechanisms.Furthermore,the spatial difference between the three mechanisms determines the spatial pattern and its evolution of the urban-rural coordination relationship in Northeast China.Fourth,to promote the development of urban-rural coordination in Northeast China,it is essential to advance urban-rural economic correlation,enhance the government^role in regulating and guiding,and adopt different policies for each region in Northeast China.
基金funded by the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KSCX2-YW-NF-01)Spark Program projects (Grant No. 2010GA600017)
文摘Currently, the agricultural growth in developed countries mainly relies on the improvement of productivity, which is also the target for China. Accordingly, the purpose of this study was to describe the spatial-temporal evolution pattern of agricultural productivity, to reveal changes in total factor productivity in 2ooo-2olo, and analyze the impact of these changes in northwestern Sichuan plateau, China. Using data envelopment analysis (DEA) and the Malmquist Index, an in-depth study was conducted on agricultural productivity and changes in total factor productivity of 31 counties in northwestern Sichuan plateau. Results indicated that: (1) geographically, counties with optimal efficiency were mainly located in the north of northwestern Sichuan plateau and those with the lowest efficiency, in the south; (2) relative to pure technical efficiency, scale efficiency was the dominant factor in determining agricultural productivity; (3) the redundancy rate of input factors in zolo was slightly lower than that in zooo, thereby indicating an improved utilization of input factors to a certain extent and a great potential for further improving such utilization; (4) during the 2ooo-2olo period, the agricultural total factor productivity had an average annual growth rate of 8.3%, but the growth rates in various regions differed widely; (5) technical progress was the dominant factor promoting the improvement of total factor oroductivitv inagriculture. The disparities in spatial distribution may be due to the differences of natural conditions, former level agricultural productivity between counties. The findings are valuable for the government to make sustainable development policies for agriculture and improving agricultural development in northwestern Sichuan plateau.
基金Under the auspices of National Natural Science Project(No.42161046)National Social Science Project(No.21CJY075)+2 种基金Guangxi Natural Science Project(No.2021JJB150070)Guangxi Philosophy and Social Science Project(No.20FJY027)Guangxi First-class Discipline Applied Economics Construction Project Fund(Guangxi Education and Scientific Research(No.[2022]No.1))。
文摘Exploring the spatial and temporal evolution characteristics of the border land use multifunctionality(LUMF)provides insights for taking advantage of border land use and optimizing border land use policies.Based on the improved Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)mode,this study identifies and evaluates the LUMFs in the China-Vietnam border area between 2000 and 2018 from the perspectives of agricultural production,social security,ecological service,landscape recreation,and national security.The results show that:1)The comprehensive land use functions in most counties and cities continued to be improved.2)The comprehensive land use function exhibits remarkable spatial divergence and aggregation characteristics.The high-value area of the agricultural production function and social security function evolves from the east to the west.In addition,the spatial evolution of ecological service function is complicated,without an obvious spatial divergence and aggregation pattern.The landscape recreation function shows different spatial differentiation characteristics in the early and middle stage,and forms a large cluster in the later stage.Finally,the spatial evolution pattern of the national security function is significant.3)Designing differentiated border land policies,improving border land use security,and establishing a long-term mechanism for ecological protection and ecological compensation can aid in optimizing the LUMF level in the border area.
文摘Accessibility is an important tool</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to evaluate the maturity of a regional traffic network structure</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> which </span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">describes the traffic convenience in the traffic</span><span style="font-family:Verdana;"> network. </span><span style="font-family:Verdana;">The paper defines a new accessibility index by using the resident pop</span><span style="font-family:Verdana;">ulation weighted average value of the sum of inverse of the traveling time </span><span style="font-family:Verdana;">distance and time threshold coming from ordinary traffic network, and then uses this accessibility index to analyze the spatial-temporal characteristics of Henan highway network, as well as its evolution patterns from 2005 to 2020. The results show that with the expansion and improvement of Henan highway network, city accessibility level has been significantly improved, spatial convergence is obvious, the cities in the north central are always High-High aggregation area, the cities in the south are always Low-Low aggregation area, gradually forming the characteristics of Northwest high and Southeast low, relative balance between East and West. There is some non-conforming phenomenon in highway mileage growth and improvement of the city accessibility levels, but this situation is being weakened, the highway network layout is gradually rationalized, the spatial distribution of city accessibility and that of population are beginning to converge.
基金supported in part by the State Key Basic Research Program of China(No.2011CB201203)in part by the General Project of the National Natural Science Foundation of China(No.50974141)the Fundamental Research Funds for the Central Universities(No.CDJZR12240055)
文摘Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°.
基金supported by the National Natural Science Foundation of China(11332006,11272233,and 11411130150)the National Basic Research Programm of China(2012CB720101)
文摘The spatial-temporal evolution of coherent structures (CS) is significant for turbulence control and drag re- duction. Among the CS, low and high speed streak structures show typical burst phenomena. The analysis was based on a time series of three-dimensional and three-component (3D-3C) velocity fields of the flat plate turbulent boundary layer (TBL) measured by a Tomographic and Time-resolved PIV (Tomo TRPIV) system. Using multi-resolution wavelet transform and conditional sampling method, we extracted the intrinsic topologies and found that the streak structures appear in bar-like patterns. Furthermore, we seized locations and velocity information of transient CS, and then calculated the propagation velocity of CS based on spatial-temporal cross-correlation scanning. This laid a foundation for further studies on relevant dynamics properties.
文摘Studying the agricultural spatial distribution characteristics of Jianghan Plain from 2000 to 2018 and its spatial-temporal transformation with ecological space and urban space is of great significance for optimizing the spatial structure of the country, enhancing the supply capacity of agricultural products, and ensuring food security. The research results show that during the period from 2000 to 2018, the agricultural spatial concentration in the area along the “Xiaogan-Jingzhou” link was relatively high, and the areas with large declines were mainly distributed in the flat areas between the Yangtze River and Han River;the space is continuously reduced by the occupation of ecological space and urban space, and ecological space and urban space have been improved respectively;agricultural space has been transformed into ecological space, and the largest urban space has been transformed. Ecological space has been transformed into agricultural space and urban space. Less urban space has been transformed into agricultural space and ecological space.
基金The National Natural Science Foundation of China (42171223)The National Social Science Foundation of China (19BJY205)+1 种基金The Department of Education Youth Science and Technology Talent Growth Fund of Guizhou ([2022]107)The Mountain Discipline Construction Project of Minzu Normal University of Xingyi (XKJS202332)。
文摘The Three-River Source Region is an important ecological security barrier in China.Revealing the spati-otemporal evolution characteristics of its landscape types and ecological risks is of great significance for promoting ecological restoration and landscape pattern optimization in the Three-River Source Region.Selecting the Three-River Source Region for a case study and applying the land-use data from four periods(the 1990,2000,2010,and 2020),we constructed a landscape ecological risk assessment model for the region based on the landscape pattern index.We then quantitatively assessed the ecological risks and determined the characteristics of their spa-tial-temporal evolution.The results showed that:(1)The overall landscape ecological risk in the Three-River Source Region tended to decrease from northwest to southeast,and the distribution of landscape ecological risk was closely related to the natural plateau zones and the changes in land cover.(2)From 1990 to 2020,the areas covered by grasslands,water bodies,croplands,and construction land in the Three-River Source Region increased,while the areas of woodlands and unused land decreased.The spatial-temporal changes in the ecological landscape risk were consistent with the characteristics of the changes in the landscape types.The areas categorized as highest,higher,medium,lower and lowest risk areas,while highest and higher risk areas decreased by 9.76%,medium risk areas increased by 1.03%,lower risk areas increased by 8.99%,and lowest risk areas decreased by 0.26%,respectively.(3)Overall,the Three-River Source Region was dominated by very low to medium ecological risk,the areas of which accounted for more than 70%of the entire study area.Overall ecological risks are decreasing,and there is positive spatial autocorrelation of landscape ecological risks in adjacent evaluation units.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金funded by National Natural Science Foundation of China(No.41501170)the special fund for basic scientific research of colleges and universities under the jurisdiction of the Central Government(No.0100219175)
文摘Against a background of deepened globalization, the socio-spatial distribution characteristics of the employed population are one of the important perspectives that reflect the impact of globalization on urban social space. Based on data of the population census of Shanghai in 2000 and 2010, using location quotient and index of dissimilarity, this paper analyzes the residential differentiation evolution in Shanghai from 2000 to 2010. The results show that except the high-end service industry, the residential differentiation of the employees in the other three types of industries has intensified but is not serious. In addition, the proportion of employees in high-end service industry within the Middle Ring has increased, while that of employees in the middle-and low-end service industry beyond the Middle Ring has increased, which further proves that globalization has an increasingly obvious impact on the socio-spatial differentiation in Shanghai. However, the adjustment in spatial development made by the Shanghai municipal government in response to globalization makes the socio-spatial evolution of Shanghai greatly different from the suburbanization of social elites in the West.
基金partially supported by U.S.National Science Foundation grants EAR1925965 and RISE-2425889support from the European Research Council under the European Union Horizon 2020 research and innovation program(grant agreement no.742335,FIMAGE)。
文摘Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.