[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in...[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China.展开更多
Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1km. The results suggest that submes...Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer, since the mixed layer is thicker and more unstable in the winter. The parameterization developed by Fox-Kemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.展开更多
Throughfall variability plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its potential influencing factors remain unclear in the s...Throughfall variability plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its potential influencing factors remain unclear in the subtropical deciduous forest because of its complex canopy and meteorological conditions. Here, the spatial variability and temporal stability of throughfall were investigated from October 2016 to December 2017 within a deciduous forest in the subtropical hilly regions of eastern China, and the effects of meteorological variables and distance from nearest tree trunk on throughfall variability were systematically evaluated. Throughfall variability during the leafed period was slightly higher than that during the leafless period inferred from the coefficient of variation of throughfall amounts(CVTF), with 13.2%-40.9% and 18.7%-31.9%, respectively. The multiple regression model analysis suggested that the controlling factors of throughfall variability were different in studied periods: Maximum 10-min rainfall intensity, wind speed and air temperature were the dominant influencing factors on throughfall variability during the leafed period, with the relative contribution ratio(RCR) of 25.9%, 18.7% and 8.9%, respectively. By contrast, throughfall variability was affected mainly by the mean rainfall intensity(RCR=40.8%) during the leafless period. The temporal stability plots and geostatistical analysis indicated that spatial patterns of throughfall were stable and similar among rainfall events. Our findings highlight the important role of various meteorological factors in throughfall variability and are expected to contribute to the accurate assessment of throughfall, soil water and runoff within the subtropical forests.展开更多
The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sust...The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.展开更多
Intensity and variability of droughts are considered inIranduring the period 1951 to 2005. Four variables are considered: the Palmer Drought Severity Index (PDSI), the soil moisture, the temperature and the precipitat...Intensity and variability of droughts are considered inIranduring the period 1951 to 2005. Four variables are considered: the Palmer Drought Severity Index (PDSI), the soil moisture, the temperature and the precipitation (products used for the analysis are downloaded from the NCAR website). Link with the climatic indexLa Ninais also considered (NOAA downloadable products is used). The analysis is based on basic statistical approaches (correlation, linear regressions and Principal Component Analysis). The analysis shows that PDSI is highly correlated to the soil moisture and poorly correlated to the other variables—although the temperature in the warm season shows high correlation to the PDSI and that a severe drought was experienced during 1999-2002 inthe country.展开更多
As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limite...As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.展开更多
In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed p...In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by la...Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).展开更多
This paper investigates the spatial-temporal cooperative guidance problem for multiple flight vehicles without relying on time-to-go information.First,a two-stage cooperative guidance strategy,namely the cooperative g...This paper investigates the spatial-temporal cooperative guidance problem for multiple flight vehicles without relying on time-to-go information.First,a two-stage cooperative guidance strategy,namely the cooperative guidance and the Proportional Navigation Guidance(PNG)stage strategy,is developed to realize the spatial-temporal constraints in two dimensions.At the former stage,two controllers are designed and superimposed to satisfy both impact time consensus and impact angle constraints.Once the convergent conditions are satisfied,the flight vehicles will switch to the PNG stage to ensure zero miss distance.To further extend the results to three dimensions,a planar pursuit guidance stage is additionally imposed at the beginning of guidance.Due to the inde-pendence of time-to-go estimation,the proposed guidance strategy possesses great performance in satisfying complex spatial-temporal constraints even under flight speed variation.Finally,several numerical simulations are implemented to verify the effectiveness and advantages of the proposed results under different scenarios.展开更多
Forest fires pose a significant threat to human life and property,so the utilization of unmanned aircraft systems provides new ways for forest firefighting.Given the constrained load capacities of these aircraft,aeria...Forest fires pose a significant threat to human life and property,so the utilization of unmanned aircraft systems provides new ways for forest firefighting.Given the constrained load capacities of these aircraft,aerial refueling becomes crucial to extend their operational time and range.In order to address the complexities of firefighting missions involving multi-receiver and multi-tanker deployed from various airports,first,a fuel consumption calculation model for aerial refueling scheduling is established based on the receiver path.Then,two distinct methods,including an integrated one and a decomposed one,are designed to address the challenges of establishing refueling airspace and allocating tasks for tankers.Both methods aim to optimize total fuel consumption of the receivers and tankers within the aerial refueling scheduling framework.The optimization problem is established as nonlinear optimization models along with restrictions.The integrated method seamlessly combines refueling rendezvous point scheduling and tanker task allocation into unified process.It has a complete solution space and excels in optimizing total fuel consumption.The decomposed method,through the separation of rendezvous point scheduling and task allocation,achieves a reduced computational complexity.However,this comes at the cost of sacrificing optimality by excluding specific feasible solutions.Finally,numerical simulations are carried out to verify the feasibility and effectiveness of the proposed methods.These simulations yield insights crucial for the practical engineering application of both the integrated and decomposed methods in real-world scenarios.This comprehensive approach aims to enhance the efficiency of forest firefighting operations,mitigating the risks posed by forest fires to human life and property.展开更多
In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.A...In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.展开更多
The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable soc...The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.展开更多
To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to...To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.展开更多
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into...Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.展开更多
Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental...Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.展开更多
Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic...Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.展开更多
As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wet...As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.展开更多
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t...An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.展开更多
基金Supported by National Natural Science Foundation of China(40801216/D011002)~~
文摘[Objective] The aim was to discuss the relationship between forest fire and meterological elements (precipitation and temprature) in each region of China.[Method] Firstly,the average precipitation and temperature in forest area of each province in fire season were obtained based on meterological data,forest distribution data,seasonal and monthly data of forest fire in China.Secondly,the relationship among forest fire area,precipitation and temperature was discussed through temporal and correlation analysis.[Result] The changes of precipitation and temperature with time could reflect the annual variation of fire area well.Forest fire area went up with the decrease of precipitation and increase of temprature,and visa versa.Meanwhile,there existed diffirences in the relationship in various regions over time.Correlation analyses revealed that there was positive correlation between forest fire area and temperature,especailly Northwest China (R=0.367,P〈0.01),Southwest China (R=0.327,P〈0.05),South China (R=0.33,P〈0.05),East China (R=0.516,P〈0.01) and Xinjiang (R=0.447,P〈0.05) with obviously positive correlation.At the same time,the correlation between forest fire area and precipitation was significantly positive in Northwest China (R=0.482,P〈0.01),while it was significantly negaive in South China (R=-0.323,P=0.03),but there was no significant correlation in other regions.[Conclusion] Relationships between forest fire and meteorological elements (precipitation and temprature) revealed in the study would be useful for fire provention and early warning in China.
基金Supported by the Natural Science Foundation of China(No.41576009)the National Key Research and Development Program(No.2016YFC1401403)the State Key Laboratory of Tropical Oceanography,and the Global Change and Air-Sea Interaction Project(Nos.GASIIPOVAI-01-03,GASI-IPOVAI-01-02)
文摘Spatial and seasonal variabilities of submesoscale currents in the northeastern South China Sea are investigated by employing a numerical simulation with a horizontal resolution of 1km. The results suggest that submesoscale currents are widespread in the surface mixed layer mainly due to the mixed layer instabilities and frontogenesis. In horizontal, submesoscale currents are generally more active in the north than those in the south, since that active eddies, especially cyclonic eddies, mainly occur in the northern area. Specifically, submesoscale currents are highly intensified in the east of Dongsha Island and south of Taiwan Island. In temporal sense, submesoscale currents are more active in winter than those in summer, since the mixed layer is thicker and more unstable in the winter. The parameterization developed by Fox-Kemper et al. is examined in terms of vertical velocity, and the results suggest that it could reproduce the vertical velocity if mixed layer instability dominates there. This study improves our understanding of the submesoscale dynamics in the South China Sea.
基金supported by the National Natural Science Foundation of China (Grants No. 41861022, 91647203, 51609145)the Natural Science Foundation of Jiangsu Province (No. BK20161612)+2 种基金“One-Three-Five” Strategic Planning of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (Grant No. NIGLAS2017GH07)Science Foundation of Nanjing Hydraulic Research Institute (No. Y517009)Jiangsu Planned Projects for Postdoctoral Research Funds (118000003)
文摘Throughfall variability plays a crucial role in regulating hydrological and biogeochemical processes in forest ecosystems. However, throughfall variability and its potential influencing factors remain unclear in the subtropical deciduous forest because of its complex canopy and meteorological conditions. Here, the spatial variability and temporal stability of throughfall were investigated from October 2016 to December 2017 within a deciduous forest in the subtropical hilly regions of eastern China, and the effects of meteorological variables and distance from nearest tree trunk on throughfall variability were systematically evaluated. Throughfall variability during the leafed period was slightly higher than that during the leafless period inferred from the coefficient of variation of throughfall amounts(CVTF), with 13.2%-40.9% and 18.7%-31.9%, respectively. The multiple regression model analysis suggested that the controlling factors of throughfall variability were different in studied periods: Maximum 10-min rainfall intensity, wind speed and air temperature were the dominant influencing factors on throughfall variability during the leafed period, with the relative contribution ratio(RCR) of 25.9%, 18.7% and 8.9%, respectively. By contrast, throughfall variability was affected mainly by the mean rainfall intensity(RCR=40.8%) during the leafless period. The temporal stability plots and geostatistical analysis indicated that spatial patterns of throughfall were stable and similar among rainfall events. Our findings highlight the important role of various meteorological factors in throughfall variability and are expected to contribute to the accurate assessment of throughfall, soil water and runoff within the subtropical forests.
基金National Key R&D Program of China,No.2017YFB0504102National Natural Science Foundation of China,No.41771537
文摘The Babao River Basin is the "water tower" of the Heihe River Basin.The combination of vulnerable ecosystems and inhospitable natural environments substantially restricts the existence of humans and the sustainable development of society and environment in the Heihe River Basin.Soil temperature(ST) is a critical soil variable that could affect a series of physical,chemical and biological soil processes,which is the guarantee of water conservation and vegetation growth in this region.To measure the temporal variation and spatial pattern of ST fluctuation in the Babao River Basin,fluctuation of ST at various depths were analyzed with ST data at depths of 4,10 and 20 cm using classical statistical methods and permutation entropy.The study results show the following: 1) There are variations of ST at different depths,although ST followed an obvious seasonal law.ST at shallower depths is higher than at deeper depths in summer,and vice versa in winter.The difference of ST between different depths is close to zero when ST is near 5℃ in March or –5℃ in September.2) In spring,ST at the shallower depths becomes higher than at deeper depths as soon as ST is above –5℃;this is reversed in autumn when ST is below 5℃.ST at a soil depth of 4 cm is the first to change,followed by ST at 10 and 20 cm,and the time that ST reaches the same level is delayed for 10–15 days.In chilling and warming seasons,September and February are,respectively,the months when ST at various depths are similar.3) The average PE values of ST for 17 sites at 4 cm are 0.765 in spring > 0.764 in summer > 0.735 in autumn > 0.723 in winter,which implies the complicated degree of fluctuations of ST.4) For the variation of ST at different depths,it appears that Max,Ranges,Average and the Standard Deviation of ST decrease by depth increments in soil.Surface soil is more complicated because ST fluctuation at shallower depths is more pronounced and random.The average PE value of ST for 17sites are 0.863 at a depth of 4 cm > 0.818 at 10 cm > 0.744 at 20 cm.5) For the variation of ST at different elevations,it appears that Max,Ranges,Average,Standard Deviation and ST fluctuation decrease with increasing elevation at the same soil depth.And with the increase of elevation,the decrease rates of Max,Range,Average,Standard Deviation at 4 cm are –0.89℃/100 m,–0.94℃/100 m,–0.43℃/100 m,and –0.25℃/100 m,respectively.In addition,this correlation decreased with the increase of soil depth.6) Significant correlation between PE values of ST at depths of 4,10 and 20 cm can easily be found.This finding implies that temperature can easily be transmitted within soil at depths between 4 and 20 cm.7) For the variation of ST on shady slope and sunny slope sides,it appears that the PE values of ST at 4,10 and 20 cm for 8 sites located on shady slope side are 0.868,0.824 and 0.776,respectively,whereas they are 0.858,0.810 and 0.716 for 9 sites located on sunny slope side.
文摘Intensity and variability of droughts are considered inIranduring the period 1951 to 2005. Four variables are considered: the Palmer Drought Severity Index (PDSI), the soil moisture, the temperature and the precipitation (products used for the analysis are downloaded from the NCAR website). Link with the climatic indexLa Ninais also considered (NOAA downloadable products is used). The analysis is based on basic statistical approaches (correlation, linear regressions and Principal Component Analysis). The analysis shows that PDSI is highly correlated to the soil moisture and poorly correlated to the other variables—although the temperature in the warm season shows high correlation to the PDSI and that a severe drought was experienced during 1999-2002 inthe country.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037,and 42105133)the National Key Research and Development Program of China(No.2022YFC3703502)+1 种基金the Plan for Anhui Major Provincial Science&Technology Project(No.202203a07020003)Hefei Ecological Environment Bureau Project(No.2020BFFFD01804).
文摘As a significant city in the Yangtze River Delta regions,Hefei has experienced rapid changes in the sources of air pollution due to its high-speed economic development and urban expansion.However,there has been limited research in recent years on the spatial-temporal distribution and emission of its atmospheric pollutants.To address this,this study conducted mobile observations of urban roads using the Mobile-DOAS instrument from June 2021 to May 2022.The monitoring results exhibit a favourable consistent with TROPOMI satellite data and ground monitoring station data.Temporally,there were pronounced seasonal variations in air pollutants.Spatially,high concentration of HCHO and NO_(2)were closely associated with traffic congestion on roadways,while heightened SO_(2)levels were attributed to winter heating and industrial emissions.The study also revealed that with the implementation of road policies,the average vehicle speed increased by 95.4%,while the NO concentration decreased by 54.4%.In the estimation of urban NO_(x)emission flux,it was observed that in temporal terms,compared with inventory data,the emissions calculated viamobile measurements exhibitedmore distinct seasonal patterns,with the highest emission rate of 349 g/sec in winter and the lowest of 142 g/sec in summer.In spatial terms,the significant difference in emissions between the inner and outer ring roads also suggests the presence of the city’s primary NO_(x)emission sources in the area between these two rings.This study offers data support for formulating the next phase of air pollution control measures in urban areas.
基金supported by the National Office for Philosophy and Social Sciences(grant reference 22&ZD067).
文摘In the current situation of decelerating economic expansion,examining the digital economy(DE)as a novel economic model is beneficial for the local economy’s sustainable and high-quality development(HQD).We analyzed panel data from the Yellow River(YR)region from 2013 to 2021 and discovered notable spatial variances in the composite index and coupling coordination of the two systems.Specifically,the downstream region exhibited the highest coupling coordination,while the upstream region had the lowest.We identified that favorable factors such as economic development,innovation,industrial upgrading,and government intervention can bolster the coupling.Our findings provide a valuable framework for promoting DE and HQD in the YR region.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the National Natural Science Foundation of China(42171129)the second Tibetan Plateau Scientific Expedition and Research(2019QZKK0208)Yunnan University Talent Introduction Research Project(YJRC3201702)。
文摘Land surface evapotranspiration(ET)is a critical component in the hydrological cycle but has not well been understood in data-scarce areas especially in river basins,like Nujiang River(NRB)which is characterized by large elevation gradient and different vegetation zones with complex processes of water and energy exchange.The quality of ET from optical remote sensing is constrained by cloud cover which is common in the NRB in the monsoon seasons.To understand factors controlling the spatial-temporal heterogeneity of ET in NRB,we employed the Variable Infiltration Capacity(VIC)hydrological model by parameter optimization with support of quality controlled remote sensing ET product and observed river runoff series in the river.The modeled ET has increased during 1984-2018,which might be one of the reasons for the runoff decrease but precipitation increase in the same period.ET increase and runoff decrease tended to be quicker within altitudinal band of 2000-4000 m than in other areas in NRB.We observed that ET variation in different climatic zones were controlled by different factors.ET is generally positively correlated with precipitation,temperature,and shortwave radiation but negatively with relative humidity.In the Tundra Climate(Et)zone in the upper reach of NRB,ET is controlled by precipitation,while it is controlled by shortwave radiation in the snow climate with dry winter(Dw)zone.ET increase is influenced by the increase of temperature,wind speed,and shortwave radiation in the middle and downstream of NRB with warm temperate climate,fully humid(Cf)and warm temperate climate with dry winter(Cw).
基金the National Science Fund for Distinguished Young Scholars of China (No.62025301)the National Natural Science Foundation of China (Nos.62273043 and 62373055)+1 种基金the China National Postdoctoral Program for Innovative Talents (No.BX20230461)the China Postdoctoral Science Foundation (No.2023M740249)。
文摘This paper investigates the spatial-temporal cooperative guidance problem for multiple flight vehicles without relying on time-to-go information.First,a two-stage cooperative guidance strategy,namely the cooperative guidance and the Proportional Navigation Guidance(PNG)stage strategy,is developed to realize the spatial-temporal constraints in two dimensions.At the former stage,two controllers are designed and superimposed to satisfy both impact time consensus and impact angle constraints.Once the convergent conditions are satisfied,the flight vehicles will switch to the PNG stage to ensure zero miss distance.To further extend the results to three dimensions,a planar pursuit guidance stage is additionally imposed at the beginning of guidance.Due to the inde-pendence of time-to-go estimation,the proposed guidance strategy possesses great performance in satisfying complex spatial-temporal constraints even under flight speed variation.Finally,several numerical simulations are implemented to verify the effectiveness and advantages of the proposed results under different scenarios.
基金This work was supported by the National Natural Science Foundation of China(Nos.61833013,61473012 and 62103335)Key Research Program of Jiangxi Province in China(No.20192BBEL50005).
文摘Forest fires pose a significant threat to human life and property,so the utilization of unmanned aircraft systems provides new ways for forest firefighting.Given the constrained load capacities of these aircraft,aerial refueling becomes crucial to extend their operational time and range.In order to address the complexities of firefighting missions involving multi-receiver and multi-tanker deployed from various airports,first,a fuel consumption calculation model for aerial refueling scheduling is established based on the receiver path.Then,two distinct methods,including an integrated one and a decomposed one,are designed to address the challenges of establishing refueling airspace and allocating tasks for tankers.Both methods aim to optimize total fuel consumption of the receivers and tankers within the aerial refueling scheduling framework.The optimization problem is established as nonlinear optimization models along with restrictions.The integrated method seamlessly combines refueling rendezvous point scheduling and tanker task allocation into unified process.It has a complete solution space and excels in optimizing total fuel consumption.The decomposed method,through the separation of rendezvous point scheduling and task allocation,achieves a reduced computational complexity.However,this comes at the cost of sacrificing optimality by excluding specific feasible solutions.Finally,numerical simulations are carried out to verify the feasibility and effectiveness of the proposed methods.These simulations yield insights crucial for the practical engineering application of both the integrated and decomposed methods in real-world scenarios.This comprehensive approach aims to enhance the efficiency of forest firefighting operations,mitigating the risks posed by forest fires to human life and property.
基金This work is partly supported by the National Key Research and Development Program of China(Grant No.2020YFB1805403)the National Natural Science Foundation of China(Grant No.62032002)the 111 Project(Grant No.B21049).
文摘In the Industrial Internet of Things(IIoT),sensors generate time series data to reflect the working state.When the systems are attacked,timely identification of outliers in time series is critical to ensure security.Although many anomaly detection methods have been proposed,the temporal correlation of the time series over the same sensor and the state(spatial)correlation between different sensors are rarely considered simultaneously in these methods.Owing to the superior capability of Transformer in learning time series features.This paper proposes a time series anomaly detection method based on a spatial-temporal network and an improved Transformer.Additionally,the methods based on graph neural networks typically include a graph structure learning module and an anomaly detection module,which are interdependent.However,in the initial phase of training,since neither of the modules has reached an optimal state,their performance may influence each other.This scenario makes the end-to-end training approach hard to effectively direct the learning trajectory of each module.This interdependence between the modules,coupled with the initial instability,may cause the model to find it hard to find the optimal solution during the training process,resulting in unsatisfactory results.We introduce an adaptive graph structure learning method to obtain the optimal model parameters and graph structure.Experiments on two publicly available datasets demonstrate that the proposed method attains higher anomaly detection results than other methods.
基金Under the auspices of the National Natural Science Foundation of China(No.71974070)‘CUG Scholar'Scientific Research Funds at China University of Geosciences(Wuhan)(No.2022005)。
文摘The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.
基金supported by the Graduate Research and Innovation Project of Chongqing Normal University[Grant No.YKC23035],comprehensive evaluation,and driving factors of urban resilience in the Chengdu-Chongqing Economic Circle.
文摘To clarify the connotations and extensions of urban resilience,this study focuses on the Chengdu-Chongqing Economic Circle with 16 cities as research subjects.A comprehensive evaluation index system was constructed to measure the resilience of each city from 2003 to 2020.The spatial-temporal evolution characteristics were analyzed using Kernel density estimation,standard deviation ellipse,and spatial Markov chain analysis,and the spatial Tobit model was introduced to discover the influencing factors.The results indicate the following:①Urban resilience in the Chengdu-Chongqing Economic Circle displays an upward trend,with the center of gravity moving to the southwest,and the polarization phenomenon intensifying.②The urban resilience level in a region has certain spatial and geographical dependence,while the probability of urban resilience transfer differs in adjacent cities with different resilience levels.③Urban centrality,economic scale,openness level,and financial development promote urban resilience,whereas government scale significantly inhibits it.Finally,this paper proposes countermeasures and suggestions to improve the urban resilience of the Chengdu-Chongqing Economic Circle.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
文摘Plants play an essential role in matter and energy transformations and are key messengers in the carbon and energy cycle. Net primary productivity (NPP) reflects the capability of plants to transform solar energy into photosynthesis. It is very sensible for factors affecting on vegetation variability such as climate, soils, plant characteristics and human activities. So, it can be used as an indicator of actual and potential trend of vegetation. In this study we used the actual NPP which was derived from MODIS to assess the response of NPP to climate variables in Gadarif State, from 2000 to 2010. The correlations between NPP and climate variables (temperature and precipitation) are calculated using Pearson’s Correlation Coefficient and ordinary least squares regression. The main results show the following 1) the correlation Coefficient between NPP and mean annual temperature is Somewhat negative for Feshaga, Rahd, Gadarif and Galabat areas and weakly negative in Faw area;2) the correlation Coefficient between NPP and annual total precipitation is weakly negative in Faw, Rahd and Galabat areas and somewhat negative in Galabat and Rahd areas. This study demonstrated that the correlation analysis between NPP and climate variables (precipitation and temperature) gives reliably result of NPP responses to climate variables that is clearly in a very large scale of study area.
基金Supported by projects of the National Natural Science Foundation of China(Nos.92062216,41888101).
文摘Highly evolved granite is an important sign of the mature continent crust and closely associated with deposits of rare metals.In this work,the authors undertake systematically zircon U-Pb ages and whole rock elemental data for highly evolved granitic intrusions from the Great Xing’an Range(GXR),NE China,to elucidate their discriminant criteria,spatial-temporal distribution,differentiation and geodynamic mecha-nism.Geochemical data of these highly evolved granites suggest that high w(SiO_(2))(>70%)and differentiation index(DI>88)could be quantified indicators,while strong Eu depletion,high TE_(1,3),lowΣREE and low Zr/Hf,Nb/Ta,K/Rb could only be qualitative indicators.Zircon U-Pb ages suggest that the highly evolved gran-ites in the GXR were mainly formed in Late Mesozoic,which can be divided into two major stages:Late Ju-rassic-early Early Cretaceous(162-136 Ma,peak at 138 Ma),and late Early Cretaceous(136-106 Ma,peak at 126 Ma).The highly evolved granites are mainly distributed in the central-southern GXR,and display a weakly trend of getting younger from northwest to southeast,meanwhile indicating the metallogenic potential of rare metals within the central GXR.The spatial-temporal distribution,combined with regional geological data,indicates the highly evolved Mesozoic granites in the GXR were emplaced in an extensional environ-ment,of which the Late Jurassic-early Early Cretaceous extension was related to the closure of the Mongol-Okhotsk Ocean and roll-back of the Paleo-Pacific Plate,while the late Early Cretaceous extension was mainly related to the roll-back of the Paleo-Pacific Plate.
基金the National Natural Science Foundation of China(No.61461027,61762059)the Provincial Science and Technology Program supported the Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA226)。
文摘Considering the nonlinear structure and spatial-temporal correlation of traffic network,and the influence of potential correlation between nodes of traffic network on the spatial features,this paper proposes a traffic speed prediction model based on the combination of graph attention network with self-adaptive adjacency matrix(SAdpGAT)and bidirectional gated recurrent unit(BiGRU).First-ly,the model introduces graph attention network(GAT)to extract the spatial features of real road network and potential road network respectively in spatial dimension.Secondly,the spatial features are input into BiGRU to extract the time series features.Finally,the prediction results of the real road network and the potential road network are connected to generate the final prediction results of the model.The experimental results show that the prediction accuracy of the proposed model is im-proved obviously on METR-LA and PEMS-BAY datasets,which proves the advantages of the pro-posed spatial-temporal model in traffic speed prediction.
文摘As an important river in the western part of Jilin Province,the lower reach of the Nenjiang River is an important wetland water source conservation area in Jilin Province.Within the watershed,it governs the Momoge Wetland,the Xianghai Wetland,and the Danjiang Wetland in Jilin Province.The main problem in the lower reaches of the Nenjiang River is the uneven distribution of water resources in time and space,and the intensification of land salinization.Zhenlai County and Da an City in the Nenjiang River Basin have sufficient surface water resources,with surface water as the drinking water source.Baicheng City and Tongyu County have scarce surface water resources,and both use groundwater as their domestic water source.The main polluted section in the basin is the Xianghai Reservoir,and the annual water quality evaluation is Class V.However,the water quality of the Tao er River,the main stream of the Nenjiang River,is significantly better than that of the Xianghai Reservoir.In order to better study the water environmental pollution situation in the Nenjiang River basin,monitoring data from five sections of non seasonal rivers in the basin from 2012 to 2021 were selected for studying water quality.This in-depth exploration of the water pollution status and river water quality change trends in the Nenjiang River basin is of great significance for future rural development,agricultural pattern transformation,and the promotion of water ecological civilization construction.
基金supported by the National Natural Science Foundation of China(No.51905123)Major Scientific and Technological Innovation Program of Shandong Province,China(Nos.2020CXGC010303,2022ZLGX04)Key R&D Programme of Shandong Province,China(No.2022JMRH0308).
文摘An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.