Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such a...Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams.展开更多
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factor...Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.展开更多
For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved bea...For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved beam elements are established with displacement vector interpolation,which is improved from component interpolation of the straight beam displacement.A strategy of replacing the actual curve with the isoparametric curve is used to expand the applications of the UL formulation.The examples indicate that the process of establishing the curved beam element is correct,and the accuracy with the curved beam element is obviously higher than that with the straight beam element.Generally,the same level of computational accuracy can be achieved with 1/5 as many curved beam elements as otherwise with straight beam elements.展开更多
The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on t...The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.展开更多
A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are com...Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.展开更多
By introducing an optic-null medium into the finite embedded transformation,a reflectionless spatial beam bender is designed,which can steer the output beam by a fixed pre-designed angleβfor an arbitrary incident ang...By introducing an optic-null medium into the finite embedded transformation,a reflectionless spatial beam bender is designed,which can steer the output beam by a fixed pre-designed angleβfor an arbitrary incident angle.The bending angleβof the beam bender is determined by the geometrical angle of the device,which can be changed by simply choosing different geometrical angles.For various bending angles,the designed spatial beam bender can be realized by the same materials(i.e.,an optic-null medium),which is a homogenous anisotropic material.Numerical simulations verify the reflectionless bending effect and rotated imaging ability of the proposed beam bender.A reduction model of the optic-null medium is studied,which can also be used for a reflectionless spatial beam bender with a pre-designed bending angle.展开更多
Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulatio...Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulation speed still needs to be improved.In this paper,the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables,and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly.Compared with the simulation speed of the complex structure-preserving method,the simulation speed of the symplectic Runge–Kutta method is faster,which benefits from the pretreatment step.The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples.From the numerical results about the effect of the initial radial velocity,it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly.In addition,the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies.展开更多
In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula...In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.展开更多
Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveal...Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.展开更多
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an inter...Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.展开更多
This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strate...This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.展开更多
A high-energy pulsed vacuum ultraviolet(VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet(Nd:YAG) amplifier in a KBe_(2)BO_(3)F_(2) prism-coupled ...A high-energy pulsed vacuum ultraviolet(VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet(Nd:YAG) amplifier in a KBe_(2)BO_(3)F_(2) prism-coupled device was demonstrated. The ultraviolet(UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm.A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers.The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.展开更多
Stimulated Brillouin scattering(SBS)-induced mode distortion(MD)in high power narrow linewidth fiber amplifiers has been implemented,and the origin has been investigated from the aspect of the evolution of the optical...Stimulated Brillouin scattering(SBS)-induced mode distortion(MD)in high power narrow linewidth fiber amplifiers has been implemented,and the origin has been investigated from the aspect of the evolution of the optical spectrum,spatial beam profiles,and temporal-frequency domain characteristics.展开更多
The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conv...The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.展开更多
Based on the optical activity of quartz crystal, we proposed a scheme for shaping the spatial intensity distribution of a linearly polarized laser beam by utilizing a quartz crystal piano-convex lens in combination wi...Based on the optical activity of quartz crystal, we proposed a scheme for shaping the spatial intensity distribution of a linearly polarized laser beam by utilizing a quartz crystal piano-convex lens in combination with a polarizer. The intensity profile of the shaped laser beam can be easily switched from one profile to another by controlling the polarization direction of the incident laser beam.展开更多
Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic re...Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic response analysis of three dimensional beam structures. It is pointed out that both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off diagonal in a general case. A special discrete element, zero length rigid element, is introduced to simulate the node at which multiple elements are jointed together. It may also be efficient when the axes of adjacent elements are not in the same line. The formulation of stiffness matrix is established while nonlinearity is taken into consideration. Given examples show that the model is successful in eigenvalue calculation and geometric nonlinear response analysis.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars (No. 50725826).
文摘Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams.
基金Project supported by the National Natural Science Foundation of China(No.50725826)the National Science and Technology Support Program(No.2008BAJ08B06)+1 种基金the National Technology Research and Development Program(No.2009AA04Z420)the Shanghai Postdoctoral fund (No.I0R21416200)
文摘Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.
基金The Major Research Plan of the National Natural Science Foundation of China(No.90715021)
文摘For the purpose of carrying out the large deformation finite element analysis of spatial curved beams,the total Lagrangian(TL)and the updated Lagrangian(UL)incremental formulations for arbitrary spatial curved beam elements are established with displacement vector interpolation,which is improved from component interpolation of the straight beam displacement.A strategy of replacing the actual curve with the isoparametric curve is used to expand the applications of the UL formulation.The examples indicate that the process of establishing the curved beam element is correct,and the accuracy with the curved beam element is obviously higher than that with the straight beam element.Generally,the same level of computational accuracy can be achieved with 1/5 as many curved beam elements as otherwise with straight beam elements.
基金The research is supported by the National Natural Science Foundation of China(11672241,11972284,11432010)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)Fund of the Youth Innovation Team of Shaanxi Universities,the Seed Foundation of Qian Xuesen Laboratory of Space Technology,and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ1605).
文摘The dynamic analysis on the ultra-large spatial structure can be simplified drastically by ignoring the flexibility and damping of the structure.However,these simplifications will result in the erroneous estimate on the dynamic behaviors of the ultra-large spatial structure.Taking the spatial beam as an example,the minimum control energy defined by the difference between the initial total energy and the final total energy in the assumed stable attitude state of the beam is investigated by the structure-preserving method proposed in our previous studies in two cases:the spatial beam considering the flexibility as well as the damping effect,and the spatial beam ignoring both the flexibility and the damping effect.In the numerical experiments,the assumed simulation interval of three months is evaluated on whether or not it is long enough for the spatial flexible damping beam to arrive at the assumed stable attitude state.And then,taking the initial attitude angle and the initial attitude angle velocity as the independent variables,respectively,the minimum control energies of the mentioned two cases are investigated in detail.From the numerical results,the following conclusions can be obtained.With the fixed initial attitude angle velocity,the minimum control energy of the spatial flexible damping beam is higher than that of the spatial rigid beam when the initial attitude angle is close to or far away from the stable attitude state.With the fixed initial attitude angle,ignoring the flexibility and the damping effect will underestimate the minimum control energy of the spatial beam.
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
基金supported by the National Natural Science Foundation of China (No. 51305013)
文摘Beam flexure hinges can achieve accurate motion and force control through the elastic deformation. This paper presents a nonlinear model for uniform and circular cross-section spatial beam flexure hinges which are commonly employed in compliant parallel mechanisms. The proposed beam model takes shear deformations into consideration and hence is applicable to both slender and thick beam flexure hinges. Starting from the first principles, the nonlinear strain measure is derived using beam kinematics and expressed in terms of translational displacements and rotational angles. Second-order approximation is employed in order to make the nonlinear strain within acceptable accuracy. The natural boundary conditions and nonlinear governing equations are derived in terms of rotational Euler angles and subsequently solved for combined end loads. The resulting end load-displacement model, which is compact and closed-form, is proved to be accurate for both slender and thick beam flexure using nonlinear finite element analysis. This beam model can provide designers with more design insight of the spatial beam flexure and thus will benefit the structural design and optimization of compliant manipulators.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61971300,11604292,61905208,11674239,and 11621101)the Scientific and Technological Innovation Programs(STIP)of Higher Education Institutions in Shanxi Province,China(Grant Nos.2019L0159 and 2019L0146)the Postdoctoral Science Foundation of China(Grant Nos.2017T100430 and 2018M632455).
文摘By introducing an optic-null medium into the finite embedded transformation,a reflectionless spatial beam bender is designed,which can steer the output beam by a fixed pre-designed angleβfor an arbitrary incident angle.The bending angleβof the beam bender is determined by the geometrical angle of the device,which can be changed by simply choosing different geometrical angles.For various bending angles,the designed spatial beam bender can be realized by the same materials(i.e.,an optic-null medium),which is a homogenous anisotropic material.Numerical simulations verify the reflectionless bending effect and rotated imaging ability of the proposed beam bender.A reduction model of the optic-null medium is studied,which can also be used for a reflectionless spatial beam bender with a pre-designed bending angle.
基金supported by the National Natural Science Foundation of China(12172281,11972284 and 11872303)Fund for Distinguished Young Scholars of Shaanxi Province(2019JC-29)+1 种基金Foundation Strengthening Programme Technical Area Fund(2021-JCJQ-JJ-0565)Fund of the Youth Innovation Team of Shaanxi Universities and the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(GZ19103).
文摘Although the complex structure-preserving method presented in our previous studies can be used to investigate the orbit–attitude–vibration coupled dynamic behaviors of the spatial flexible damping beam,the simulation speed still needs to be improved.In this paper,the infinite-dimensional dynamic model describing the orbit–attitude–vibration coupled dynamic problem of the spatial flexible damping beam is pretreated by the method of separation of variables,and the second-level fourth-order symplectic Runge–Kutta scheme is constructed to investigate the coupling dynamic behaviors of the spatial flexible damping beam quickly.Compared with the simulation speed of the complex structure-preserving method,the simulation speed of the symplectic Runge–Kutta method is faster,which benefits from the pretreatment step.The effect of the initial radial velocity on the transverse vibration as well as on the attitude evolution of the spatial flexible damping beam is presented in the numerical examples.From the numerical results about the effect of the initial radial velocity,it can be found that the appearance of the initial radial velocity can decrease the vibration frequency of the spatial beam and shorten the evolution interval for the attitude angle to tend towards a stable value significantly.In addition,the validity of the numerical results reported in this paper is verified by comparing with some numerical results presented in our previous studies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11504286)the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2019JM-470)+1 种基金the Fund from the International Technology Collaborative Center for Advanced Optical Manufacturing and Optoelectronic Measurementthe Science Fund from the Shaanxi Provincial Key Laboratory of Photoelectric Measurement and Instrument Technology.
文摘In this study, we explore the far-zero behaviors of a scattered partially polarized spatially and spectrally partially coherent electromagnetic pulsed beam irradiating on a deterministic medium. The analytical formula for the cross-spectral density matrix elements of this beam in the spherical coordinate system is derived. Within the framework of the first-order Born approximation, the effects of the scattering angle θ, the source parameters (i.e., the pulse duration T0 and the temporal coherence length Tcxx), and the scatterer parameter (i.e., the effective width of the medium σR) on the spectral density, the spectral shift, the spectral degree of polarization, and the degree of spectral coherence of the scattered source in the far-zero field are studied numerically and comparatively. Our work improves the scattering theory of stochastic electromagnetic beams and it may be useful for the applications involving the interaction between incident light waves and scattering media.
文摘Based on the paraxial wave equation,this study extends the theory of small-scale self-focusing(SSSF)from coherent beams to spatially partially coherent beams(PCBs)and derives a general theoretical equation that reveals the underlying physics of the reduction in the B-integral of spatially PCBs.From the analysis of the simulations,the formula for the modulational instability(MI)gain coefficient of the SSSF of spatially PCBs is obtained by introducing a decrease factor into the formula of the MI gain coefficient of the SSSF of coherent beams.This decrease can be equated to a drop in the injected light intensity or an increase in the critical power.According to this formula,the reference value of the spatial coherence of spatially PCBs is given,offering guidance to overcome the output power limitation of the high-power laser driver due to SSSF.
基金supported by the National Natural Science Foundation of China (50725826)Specific Research on Cable-reinforced Membranes with Super Span and Complex Single-shell Structures of Expo Axis (08dz0580303)Shanghai Postdoctoral Fund (10R21416200)
文摘Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.
基金supported by the French ANRT agence nationale de la recherche technologique under the CIFRE conventions industrielles de formation par la recherche framework.
文摘This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.
基金supported by the National Key Research and Development Program of China(No.2023YFB3610601)the International Partnership Program for Grand Challenges of the Chinese Academy of Sciences(No.174GJHZ2022016GC)the National Special Program for High-level Talents Science and Technology(No.SQ2022RA24910010)
文摘A high-energy pulsed vacuum ultraviolet(VUV) solid-state laser at 177 nm with high peak power by the sixth harmonic of a neodymium-doped yttrium aluminum garnet(Nd:YAG) amplifier in a KBe_(2)BO_(3)F_(2) prism-coupled device was demonstrated. The ultraviolet(UV) pump laser is a 352 ps pulsed, spatial top-hat super-Gaussian beam at 355 nm.A high energy of a 7.12 mJ VUV laser at 177 nm is obtained with a pulse width of 255 ps, indicating a peak power of 28 MW, and the conversion efficiency is 9.42% from 355 to 177 nm. The measured results fitted well with the theoretical prediction. It is the highest pulse energy and highest peak power ever reported in the VUV range for any solid-state lasers.The high-energy, high-peak-power, and high-spatial-uniformity VUV laser is of great interest for ultra-fine machining and particle-size measurements using UV in-line Fraunhofer holography diagnostics.
基金National Natural Science Foundation of China(62205317).
文摘Stimulated Brillouin scattering(SBS)-induced mode distortion(MD)in high power narrow linewidth fiber amplifiers has been implemented,and the origin has been investigated from the aspect of the evolution of the optical spectrum,spatial beam profiles,and temporal-frequency domain characteristics.
文摘The low frequency line components of the radiated noise from an underwater target usually have both high spectrum level and sustained stability. This feature could be used to increase the detection performance of conventional broadband energy integration method. The required spectrum level is theoretically discussed when the detection performance of the known line detection is better than that of broadband energy integration method. Under the condition of the target can be detected in line spectrum band, the relationship between the line spectrum level and signal to noise ratio (SNR) is also discussed. This paper proposes a line spectrum target detection method that a matrix using DC jump to fluctuations ratios of sub-band spatial spectrum and beam space output is constructed. This matrix acts as a filter that the line spectrum target with certain frequency and azimuth is passed at most. By fusing with the other sub band results, the conventional detection performance can be improved. At the same time, the applicable condition and detection performance are analyzed in the paper. The simulation and the sea trial data processing results show that the algorithm can effectively extract weak goal line spectrum target under the condition of multi-interference. The algorithm doesn't need multi-frame statistics and the detection performance is closer to the optimal line spectrum method.
基金the National"863"Project in Advanced Techniques in China under Grant No.2007AA804801.
文摘Based on the optical activity of quartz crystal, we proposed a scheme for shaping the spatial intensity distribution of a linearly polarized laser beam by utilizing a quartz crystal piano-convex lens in combination with a polarizer. The intensity profile of the shaped laser beam can be easily switched from one profile to another by controlling the polarization direction of the incident laser beam.
文摘Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic response analysis of three dimensional beam structures. It is pointed out that both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off diagonal in a general case. A special discrete element, zero length rigid element, is introduced to simulate the node at which multiple elements are jointed together. It may also be efficient when the axes of adjacent elements are not in the same line. The formulation of stiffness matrix is established while nonlinearity is taken into consideration. Given examples show that the model is successful in eigenvalue calculation and geometric nonlinear response analysis.