为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫...为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。展开更多
目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以...目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以上问题,提出了一种改进YOLOv7(you only look once version 7)的交通标志识别模型。方法首先,采用空间金字塔池化快速跨级部分连接(spatial pyramid pooling fast cross stage partial concat,SPPFCSPC)方法,替换YOLOv7算法使用的空间金字塔池化跨级部分连接(spatial pyramid pooling cross stage partial concat,SPPCSPC)方法,提高算法的特征提取能力。其次,采用加权双向特征金字塔网络(bi-directional feature pyra⁃mid network,BiFPN),增强算法的多尺度特征融合能力。接着,采用一种新的框间距离度量的归一化Wasserstein距离(normalized Wasserstein distance,NWD)方法,解决传统的IoU(intersection over union)度量对小目标交通标志检测过于敏感的问题。最后,使用特征内容的感知重组(content-aware reassembly of feature,CARAFE)算子,通过输入的特征,自适应生成上采样内核,有效地增加模型的感受域,更好地利用目标周边的信息,减少交通标志错检和漏检情况。结果实验结果表明,在减少算法参数量的基础上,改进算法在TT100K交通标志数据集上的mAP@0.5和mAP@0.5∶0.9值分别达到了92.50%和72.21%,较原始的YOLOv7算法分别提高了3.24%和1.83%。同时,在具有小目标特性的CCTSDB交通标志数据集和整理的国外交通标志数据集上验证了模型改进的有效性。结论通过实验验证和主客观评价,证明了本文改进算法的可行性,能够有效地对多种环境下的小目标交通标志进行识别,并在降低算法参数量的前提下,进一步提高了YOLOv7算法对交通标志识别的平均精度。展开更多
针对水下图像目标检测算法普遍存在的误检、精度低和泛化能力弱等问题,提出一种水下图像目标检测算法AWAF-YOLO。首先,通过各向异性下采样(ADown)模块增强网络灵活性从而更加有效地获取多尺度数据特征。其次,利用小波变换卷积(WTConv)...针对水下图像目标检测算法普遍存在的误检、精度低和泛化能力弱等问题,提出一种水下图像目标检测算法AWAF-YOLO。首先,通过各向异性下采样(ADown)模块增强网络灵活性从而更加有效地获取多尺度数据特征。其次,利用小波变换卷积(WTConv)模块减轻模型复杂程度,大幅减少计算负担。然后,构建快速空间金字塔池化混合自注意力和卷积(SPPFAC)模块,通过融合注意力与跨通道交互,来提升多尺度特征判别力,更加智能地聚焦于关键特征信息,实现特征处理过程优化。最后,引入FSIoU(Focused Intersection over Union Loss and Metric Bounding Box Shape and Scale)损失函数,通过动态聚焦与几何约束耦合,实现复杂目标精准定位。实验结果表明,相较于基线模型,所提算法在TrashCan1.0数据集的平均精度均值(mAP@0.5∶0.95)提高2.6百分点,在Aquarium数据集的mAP@0.5∶0.95提高1.6百分点。结果表明所提算法具有良好的有效性和泛化性,为水下图像目标检测研究提供了一种新的思路。展开更多
文摘为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。
文摘目的随着自动驾驶和辅助驾驶的快速发展,交通标志识别研究变得越来越重要。但是现阶段交通标志识别算法对交通标志识别的精度较低,尤其在面对目标背景较为复杂、光照不足和小目标交通标志的场景时,更加容易出现错检和漏检情况。针对以上问题,提出了一种改进YOLOv7(you only look once version 7)的交通标志识别模型。方法首先,采用空间金字塔池化快速跨级部分连接(spatial pyramid pooling fast cross stage partial concat,SPPFCSPC)方法,替换YOLOv7算法使用的空间金字塔池化跨级部分连接(spatial pyramid pooling cross stage partial concat,SPPCSPC)方法,提高算法的特征提取能力。其次,采用加权双向特征金字塔网络(bi-directional feature pyra⁃mid network,BiFPN),增强算法的多尺度特征融合能力。接着,采用一种新的框间距离度量的归一化Wasserstein距离(normalized Wasserstein distance,NWD)方法,解决传统的IoU(intersection over union)度量对小目标交通标志检测过于敏感的问题。最后,使用特征内容的感知重组(content-aware reassembly of feature,CARAFE)算子,通过输入的特征,自适应生成上采样内核,有效地增加模型的感受域,更好地利用目标周边的信息,减少交通标志错检和漏检情况。结果实验结果表明,在减少算法参数量的基础上,改进算法在TT100K交通标志数据集上的mAP@0.5和mAP@0.5∶0.9值分别达到了92.50%和72.21%,较原始的YOLOv7算法分别提高了3.24%和1.83%。同时,在具有小目标特性的CCTSDB交通标志数据集和整理的国外交通标志数据集上验证了模型改进的有效性。结论通过实验验证和主客观评价,证明了本文改进算法的可行性,能够有效地对多种环境下的小目标交通标志进行识别,并在降低算法参数量的前提下,进一步提高了YOLOv7算法对交通标志识别的平均精度。
文摘针对水下图像目标检测算法普遍存在的误检、精度低和泛化能力弱等问题,提出一种水下图像目标检测算法AWAF-YOLO。首先,通过各向异性下采样(ADown)模块增强网络灵活性从而更加有效地获取多尺度数据特征。其次,利用小波变换卷积(WTConv)模块减轻模型复杂程度,大幅减少计算负担。然后,构建快速空间金字塔池化混合自注意力和卷积(SPPFAC)模块,通过融合注意力与跨通道交互,来提升多尺度特征判别力,更加智能地聚焦于关键特征信息,实现特征处理过程优化。最后,引入FSIoU(Focused Intersection over Union Loss and Metric Bounding Box Shape and Scale)损失函数,通过动态聚焦与几何约束耦合,实现复杂目标精准定位。实验结果表明,相较于基线模型,所提算法在TrashCan1.0数据集的平均精度均值(mAP@0.5∶0.95)提高2.6百分点,在Aquarium数据集的mAP@0.5∶0.95提高1.6百分点。结果表明所提算法具有良好的有效性和泛化性,为水下图像目标检测研究提供了一种新的思路。