Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures...Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.展开更多
The increase in China’s skilled labor force has drawn much attention from policymakers,national and international firms and media.Understanding how educated talent locates and re-locates across the country can guide ...The increase in China’s skilled labor force has drawn much attention from policymakers,national and international firms and media.Understanding how educated talent locates and re-locates across the country can guide future policy discussions of equality,firm localization and service allocation.Prior studies have tended to adopt a static cross-national approach providing valuable insights into the relative importance of economic and amenity differentials driving the distribution of talent in China.Yet,few adopt longitudinal analysis to examine the temporal dynamics in the stregnth of existing associations.Recently released official statistical data now enables space-time analysis of the geographic distribution of talent and its determinants in China.Using four-year city-level data from national population censuses and 1%population sample surveys conducted every five years between 2000 and 2015,we examine the spatial patterns of talent across Chinese cities and their underpinning drivers evolve over time.Results reveal that the spatial distribution of talent in China is persistently unequal and spatially concentrated between 2000 and 2015.It also shows gradually strengthened and significantly positive spatial autocorrelation in the distribution of talent.An eigenvector spatial filtering negative binomial panel is employed to model the spatial determinants of talent distribution.Results indicate the influences of both economic opportunities and urban amenities,particularly urban public services and greening rate,on the distribution of talent.These results highlight that urban economic-and amenity-related factors have simultaneously driven China’s talent’s settlement patterns over the first fifteen years of the 21st century.展开更多
This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in t...This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in the area being studied between 1998 and 2001 were analyzed. Firstly, the geographic information system (GIS) software ArcGIS was used to map the crude prevalence rates. Secondly, the data were smoothed by the method of spatial filtering. We evaluated that the effect of changes in spatial filtering radius size was assessed by creating maps based on various filtering radius sizes. The 3 miles or larger filtering radius gives better section variability than the 2 and 2.5 miles or smaller ones. The maps produced by the spatial filtering technique indicate that prevalence rates in the villages in the southeastern region are to produce higher prevalence than that in the other regions. The smoothed maps based on Heshun County display a more adequate data representation than the raw prevalence rate map.展开更多
Spatial filtering velocimetry(SFV)has the advantages of simple structure,good stability,and wide applications.However,the traditional linear CCD-based SFV method requires an accurate angle between the direction of lin...Spatial filtering velocimetry(SFV)has the advantages of simple structure,good stability,and wide applications.However,the traditional linear CCD-based SFV method requires an accurate angle between the direction of linear CCD and the direction of moving object,so it is not suitable for measuring a complex flow field or two-dimensional speed in a granular media.In this paper,a new extension of spatial filtering method(SFM)based on high speed array CCD camera is proposed as simple and effective technique for measuring two-dimensional speed field of granular media.In particular,we analyzed the resolution and range of array CCD-based SFV so that the reader can clarify the application scene of this method.This method has a particular advantage for using orthogonal measurement to avoid the angle measurement,which were problematic when using linear CCD to measure the movement.Finally,the end-wall effects of the granular flow in rotating drum is studied with different experimental conditions by using this improved technique.展开更多
The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolym...The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.展开更多
Independent Component Analysis (ICA) was often used to separate movement related independent components (MRICs) from Electroencephalogram (EEG) data.?However, to obtain robust spatial filters, complex characteristic f...Independent Component Analysis (ICA) was often used to separate movement related independent components (MRICs) from Electroencephalogram (EEG) data.?However, to obtain robust spatial filters, complex characteristic features, which were manually selected in most cases, have been commonly used. This study proposed a new simple algorithm to extract MRICs automatically, which just utilized the spatial distribution pattern of ICs. The main goal of this study was to show the relationship between spatial filters performance and designing samples. The EEG data which contain?mixed brain states (preparing, motor imagery and rest) were used to design spatial filters. Meanwhile, the single class data was also used to calculate spatial filters to assess whether the MRICs extracted on different class motor imagery spatial filters are similar. Furthermore, the spatial filters constructed on one subject’s EEG data were applied to extract the others’ MRICs. Finally, the different spatial filters were then applied to single-trial EEG to extract MRICs, and Support Vector Machine (SVM) classifiers were used to discriminate left hand、right-hand and foot imagery movements of BCI Competition IV Dataset 2a, which recorded four motor imagery data of nine subjects. The results suggested that any segment of finite motor imagery EEG samples could be used to design ICA spatial filters, and the extracted MRICs are consistent if the position of electrodes are the same, which confirmed the robustness and practicality of ICA used in the motor imagery Brain Computer Interfaces (MI-BCI) systems.展开更多
Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind sourc...Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.展开更多
Snow water equivalent(SWE)is an important factor reflecting the variability of snow.It is important to estimate SWE based on remote sensing data while taking spatial autocorrelation into account.Based on the segmentat...Snow water equivalent(SWE)is an important factor reflecting the variability of snow.It is important to estimate SWE based on remote sensing data while taking spatial autocorrelation into account.Based on the segmentation method,the relationship between SWE and environmental factors in the central part of the Tibetan Plateau was explored using the eigenvector spatial filtering(ESF)regression model,and the influence of different factors on the SWE was explored.Three sizes of 16×16,24×24 and 32×32 were selected to segment raster datasets into blocks.The eigenvectors of the spatial adjacency matrix of the segmented size were selected to be added into the model as spatial factors,and the ESF regression model was constructed for each block in parallel.Results show that precipitation has a great influence on SWE,while surface temperature and NDVI have little influence.Air temperature,elevation and surface temperature have completely different effects in different areas.Compared with the ordinary least square(OLS)linear regression model,geographically weighted regression(GWR)model,spatial lag model(SLM)and spatial error model(SEM),ESF model can eliminate spatial autocorrelation with the highest accuracy.As the segmentation size increases,the complexity of ESF model increases,but the accuracy is improved.展开更多
To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions...To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.展开更多
Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also...Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also presented to optimize these criteria chosen. There are many drawbacks in these methods. In this paper, we introduce a unified framework for optimal design of temporal and spatial filters. Most of the optimal design problems of FIR filters and beamformers are included in the framework. It is shown that all the design problems can be reformulated as convex optimization form as the second-order cone programming (SOCP) and solved efficiently via the well-established interior point methods. The main advantage of our SOCP approach as compared with earlier approaches is that it can include most of the existing methods as its special cases, which leads to more flexible designs. Furthermore, the SOCP approach can optimize multiple required performance measures, which is the drawback of earlier approaches. The SOCP approach is also developed to optimally design temporal and spatial two-dimensional filter and spatial matrix filter. Numerical results demonstrate the effectiveness of the proposed approach.展开更多
A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. A...A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. After reflected by the object, the grating projection is imaged on a detection grating through another 4f optical system to form moiré fringes, The polarization modulated moiré signal is detected to obtain the position information of the object. In the position sensor, the moiré signal varies sinusoidally with the position of object. The measurement is independent of the incident intensity on the projection grating and the reflectivity of the object to be measured, In experiments, the effectiveness of the position sensor is proved, and the root mean square (RMS) error at each measurement position is less than 13 nm.展开更多
As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetr...As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetry,and discussed two-dimensional measurements of the velocity.About the data processing,we used A/D conversion and interfaced with a microcomputer,so that the data can be processed automatically by the microcomputer.The preliminary experiment was performed and the experimental results show the usefulness of the present method for measurements of the velocity.展开更多
The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing throug...The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.展开更多
We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging....We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.展开更多
An approach to improving the performance of matched field localization by introducing a generalized spa-tial filter to suppress interference noise and pass the signal of interest with minimal distortion is presented. ...An approach to improving the performance of matched field localization by introducing a generalized spa-tial filter to suppress interference noise and pass the signal of interest with minimal distortion is presented. The spatial filter is designed by minimizing the maximum distortion of the filtered replica vectors within passband while guaran- teeing the norm of the filter response within the stopband to be lower than some given threshold values. We show that the design problem can be formulated as the second-order cone programming (SOCP) which can be solved efficiently via the well-established interior point method. A modified matched field processor is given to ultimately eliminate the effect of the distortion in the spatially filtered replica vectors. Computer simulation results confirm the effectiveness of the proposed approach by localizing a weak source in the pres-ence of a strong interferer and noise.展开更多
To mitigate the Non-Line-of-Sight (NLoS) error which seriously affects the localization accuracy and robustness in complex indoor environment,a novel Iterative Minimum Residual (IMR) based on the consistency hypothesi...To mitigate the Non-Line-of-Sight (NLoS) error which seriously affects the localization accuracy and robustness in complex indoor environment,a novel Iterative Minimum Residual (IMR) based on the consistency hypothesis of the residual and the error is proposed in this paper.It chooses the best subset of measurements to calculate the coordinates of the unknown node by comparing the residuals obtained with different subsets of beacons.To reduce the time complexity of the IMR algorithm,Spatial Correlation Filter (SCF) is also proposed,which can remove the most serious NLoS distance with low calculation cost.Combined with the proposed SCF and IMR algorithm,nodes can be localized with high accuracy and low time complexity.Experimental results with real dataset demonstrate that the proposed algorithm can identify the NLoS range effectively with about 50% time cost of employing SCF only.展开更多
For Brain-Computer Interface(BCI) systems, improving the Information Transfer Rate(ITR) is a very critical issue. This study focuses on a Steady-State Visually Evoked Potential(SSVEP)-based BCI because of its advantag...For Brain-Computer Interface(BCI) systems, improving the Information Transfer Rate(ITR) is a very critical issue. This study focuses on a Steady-State Visually Evoked Potential(SSVEP)-based BCI because of its advantage of high ITR. Unsupervised Canonical Correlation Analysis(CCA)-based method has been widely employed because of its high efficiency and easy implementation. In a recent study, an ensemble-CCA method based on individual training data was proposed and achieved an excellent performance with ITR of 267 bit/min.A 40-target SSVEP-BCI speller was investigated in this study, using an integration of Minimal-Distance(MD) and Maximal-Phase-locking value(MP) approaches. In the MD approach, a spatial filter is developed to minimize the distance between the training data and the reference sine signal, and in this study, two different types of distance were compared. In the MP approach, a spatial filter is developed to maximize the Phase-Locking Value(PLV)between the training calibration data and the reference sine signal. In addition to the fundamental frequency of stimulation, the harmonics were used to train MD and MP spatial filters, which formed spatial filter banks. The test data epoch was multiplied by the MP and MD spatial filter banks, and the distances and PLVs were extracted as features for recognition. Across 12 subjects with a 0.4 s-data length, the proposed method realized an average classification accuracy and ITR of 93% and 307 bit/min, respectively, which is significantly higher than the current state-of-the-art method. To the best of our knowledge, these results suggest that the proposed method has achieved the highest ITR in SSVEP-BCI studies.展开更多
A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy...A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy; then direct multiplication of coefficients at two adjacent scales is used to detect singularity points of the signal and to obtain scale based spatial mask filter; finally, an ' AND' logic operator is used in different filters to obtain the last spatial mask filter. By multiplication of wavelet coefficients with the final mask filter and wavelet reconstruction process, partial discharge pulses are extracted. The results of digital simulation and practical experiment show that this method is superior to traditional wavelet shrinkage method (TWS). This algorithm not only can increase the signal to noise ratio (SNR), but also can preserve the encrgy and pulse amplitude.展开更多
To suppress the ground clutter for airborne early warning (AEW) radars is the key technique in radar signal processing. In this paper, a spatial-temporal nonadaptive joint filter processing approach is proposed to sup...To suppress the ground clutter for airborne early warning (AEW) radars is the key technique in radar signal processing. In this paper, a spatial-temporal nonadaptive joint filter processing approach is proposed to suppress the clutter for AEW radars, which can significantly reduce the computation compared with other optimal or suboptimal methods. The performance of this approach is better than that of the conventional cascaded nonadaptive processing, especially.展开更多
We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous posit...We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.展开更多
基金National Natural Science Foundation of China (50830201,10872217)Aeronautical Science Foundation of China (20090952015)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20103218110005)National Science Foundation of the General Program of Jiangsu Higher Education Institutions (09KJD520005)
文摘Piezoelectric sensor array-based spatial filter technology is a new promising method presented in research area of structural health monitoring (SHM) in the recent years. To apply this method to composite structures and give the actual position of damage, this paper proposes a spatial filter-based damage imaging method improved by complex Shannon wavelet transform. The basic principle of spatial filter is analyzed first. Then, this paper proposes a method of using complex Shannon wavelet transform to construct analytic signals of time domain signals of PZT sensors array. The analytic signals are synthesized depending on the principle of the spatial filter to give a damage imaging in the form of angle-time. A method of converting the damage imaging to the form of angle-distance is discussed. Finally, an aircraft composite oil tank is adopted to validate the damage imaging method. The validating results show that this method can recognize angle and distance of damage successfully.
基金Under the auspices of the National Social Science Foundation of China(No.17ZDA055).
文摘The increase in China’s skilled labor force has drawn much attention from policymakers,national and international firms and media.Understanding how educated talent locates and re-locates across the country can guide future policy discussions of equality,firm localization and service allocation.Prior studies have tended to adopt a static cross-national approach providing valuable insights into the relative importance of economic and amenity differentials driving the distribution of talent in China.Yet,few adopt longitudinal analysis to examine the temporal dynamics in the stregnth of existing associations.Recently released official statistical data now enables space-time analysis of the geographic distribution of talent and its determinants in China.Using four-year city-level data from national population censuses and 1%population sample surveys conducted every five years between 2000 and 2015,we examine the spatial patterns of talent across Chinese cities and their underpinning drivers evolve over time.Results reveal that the spatial distribution of talent in China is persistently unequal and spatially concentrated between 2000 and 2015.It also shows gradually strengthened and significantly positive spatial autocorrelation in the distribution of talent.An eigenvector spatial filtering negative binomial panel is employed to model the spatial determinants of talent distribution.Results indicate the influences of both economic opportunities and urban amenities,particularly urban public services and greening rate,on the distribution of talent.These results highlight that urban economic-and amenity-related factors have simultaneously driven China’s talent’s settlement patterns over the first fifteen years of the 21st century.
基金Supported by the National Basic Reserch Program of China (973 Program) (2001CB5103)the National Natural Science Foundation of China (40471111 and 70571076).
文摘This study is to assess the prevalence rates spatial pattern of neural tube defects with geographic information system and spatial filtering technique. A total of 80 infants who diagnosed from neural tube defects in the area being studied between 1998 and 2001 were analyzed. Firstly, the geographic information system (GIS) software ArcGIS was used to map the crude prevalence rates. Secondly, the data were smoothed by the method of spatial filtering. We evaluated that the effect of changes in spatial filtering radius size was assessed by creating maps based on various filtering radius sizes. The 3 miles or larger filtering radius gives better section variability than the 2 and 2.5 miles or smaller ones. The maps produced by the spatial filtering technique indicate that prevalence rates in the villages in the southeastern region are to produce higher prevalence than that in the other regions. The smoothed maps based on Heshun County display a more adequate data representation than the raw prevalence rate map.
基金Project supported by the National Natural Science Foundation of China(Grant No.11902190)the Construction Project of Shanghai Key Laboratory of Molecular Imaging(Grant No.18DZ2260400)the Fund from the Shanghai Municipal Education Commission,China(Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS,2018-2020).
文摘Spatial filtering velocimetry(SFV)has the advantages of simple structure,good stability,and wide applications.However,the traditional linear CCD-based SFV method requires an accurate angle between the direction of linear CCD and the direction of moving object,so it is not suitable for measuring a complex flow field or two-dimensional speed in a granular media.In this paper,a new extension of spatial filtering method(SFM)based on high speed array CCD camera is proposed as simple and effective technique for measuring two-dimensional speed field of granular media.In particular,we analyzed the resolution and range of array CCD-based SFV so that the reader can clarify the application scene of this method.This method has a particular advantage for using orthogonal measurement to avoid the angle measurement,which were problematic when using linear CCD to measure the movement.Finally,the end-wall effects of the granular flow in rotating drum is studied with different experimental conditions by using this improved technique.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (NSAF) (Grant No. 10676038)
文摘The filter made up of two gratings performs as a two-dimensional non-spatial filtering. This paper reports that the volume Bragg gratings are fabricated by interfering two collimated coherent laser beams in photopolymer. Diffraction efficiency of a single grating is up to 78% in Bragg's condition, then a two-dimensional non-spatial filter, which consists of two volume Bragg gratings and a half-wave plate, enables the laser beam filtered in two dimensions with the diffraction efficiency of 54%. The Bragg's condition and effect of polarisation on performances of the two-dimension filter are also discussed.
文摘Independent Component Analysis (ICA) was often used to separate movement related independent components (MRICs) from Electroencephalogram (EEG) data.?However, to obtain robust spatial filters, complex characteristic features, which were manually selected in most cases, have been commonly used. This study proposed a new simple algorithm to extract MRICs automatically, which just utilized the spatial distribution pattern of ICs. The main goal of this study was to show the relationship between spatial filters performance and designing samples. The EEG data which contain?mixed brain states (preparing, motor imagery and rest) were used to design spatial filters. Meanwhile, the single class data was also used to calculate spatial filters to assess whether the MRICs extracted on different class motor imagery spatial filters are similar. Furthermore, the spatial filters constructed on one subject’s EEG data were applied to extract the others’ MRICs. Finally, the different spatial filters were then applied to single-trial EEG to extract MRICs, and Support Vector Machine (SVM) classifiers were used to discriminate left hand、right-hand and foot imagery movements of BCI Competition IV Dataset 2a, which recorded four motor imagery data of nine subjects. The results suggested that any segment of finite motor imagery EEG samples could be used to design ICA spatial filters, and the extracted MRICs are consistent if the position of electrodes are the same, which confirmed the robustness and practicality of ICA used in the motor imagery Brain Computer Interfaces (MI-BCI) systems.
基金supported by the National Natural Science Foundation of China(6237104662201048)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0260).
文摘Jamming suppression is traditionally achieved through the use of spatial filters based on array signal processing theory.In order to achieve better jamming suppression performance,many studies have applied blind source separation(BSS)to jamming suppression.BSS can achieve the separation and extraction of the individual source signals from the mixed signal received by the array.This paper proposes a perspective to recognize BSS as spatial band-pass filters(SBPFs)for jamming suppression applications.The theoretical derivation indicates that the processing of mixed signals by BSS can be perceived as the application of a set of SBPFs that gate the source signals at various angles.Simulations are performed using radar jamming suppression as an example.The simulation results suggest that BSS and SBPFs produce approximately the same effects.Simulation results are consistent with theoretical derivation results.
基金funded by the National Key S&T Special Projects of China(grant number:2018YFB0505302)the National Nature Science Foundation of China(grant number:41671380)。
文摘Snow water equivalent(SWE)is an important factor reflecting the variability of snow.It is important to estimate SWE based on remote sensing data while taking spatial autocorrelation into account.Based on the segmentation method,the relationship between SWE and environmental factors in the central part of the Tibetan Plateau was explored using the eigenvector spatial filtering(ESF)regression model,and the influence of different factors on the SWE was explored.Three sizes of 16×16,24×24 and 32×32 were selected to segment raster datasets into blocks.The eigenvectors of the spatial adjacency matrix of the segmented size were selected to be added into the model as spatial factors,and the ESF regression model was constructed for each block in parallel.Results show that precipitation has a great influence on SWE,while surface temperature and NDVI have little influence.Air temperature,elevation and surface temperature have completely different effects in different areas.Compared with the ordinary least square(OLS)linear regression model,geographically weighted regression(GWR)model,spatial lag model(SLM)and spatial error model(SEM),ESF model can eliminate spatial autocorrelation with the highest accuracy.As the segmentation size increases,the complexity of ESF model increases,but the accuracy is improved.
文摘To enable proper diagnosis of a patient,medical images must demonstrate no presence of noise and artifacts.The major hurdle lies in acquiring these images in such a manner that extraneous variables,causing distortions in the form of noise and artifacts,are kept to a bare minimum.The unexpected change realized during the acquisition process specifically attacks the integrity of the image’s quality,while indirectly attacking the effectiveness of the diagnostic process.It is thus crucial that this is attended to with maximum efficiency at the level of pertinent expertise.The solution to these challenges presents a complex dilemma at the acquisition stage,where image processing techniques must be adopted.The necessity of this mandatory image pre-processing step underpins the implementation of traditional state-of-the-art methods to create functional and robust denoising or recovery devices.This article hereby provides an extensive systematic review of the above techniques,with the purpose of presenting a systematic evaluation of their effect on medical images under three different distributions of noise,i.e.,Gaussian,Poisson,and Rician.A thorough analysis of these methods is conducted using eight evaluation parameters to highlight the unique features of each method.The covered denoising methods are essential in actual clinical scenarios where the preservation of anatomical details is crucial for accurate and safe diagnosis,such as tumor detection in MRI and vascular imaging in CT.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60472073) the Doctorate Foundation of Northwestern Polytechnical University.
文摘Temporal filters and spatial filters are widely used in many areas of signal processing. A number of optimal design criteria to these problems are available in the literature. Various computational techniques are also presented to optimize these criteria chosen. There are many drawbacks in these methods. In this paper, we introduce a unified framework for optimal design of temporal and spatial filters. Most of the optimal design problems of FIR filters and beamformers are included in the framework. It is shown that all the design problems can be reformulated as convex optimization form as the second-order cone programming (SOCP) and solved efficiently via the well-established interior point methods. The main advantage of our SOCP approach as compared with earlier approaches is that it can include most of the existing methods as its special cases, which leads to more flexible designs. Furthermore, the SOCP approach can optimize multiple required performance measures, which is the drawback of earlier approaches. The SOCP approach is also developed to optimally design temporal and spatial two-dimensional filter and spatial matrix filter. Numerical results demonstrate the effectiveness of the proposed approach.
文摘A position sensor based on grating projection with spatial filtering and polarization modulation is presented. A grating is projected onto the object to be measured through a 4f optical system with a spatial filter. After reflected by the object, the grating projection is imaged on a detection grating through another 4f optical system to form moiré fringes, The polarization modulated moiré signal is detected to obtain the position information of the object. In the position sensor, the moiré signal varies sinusoidally with the position of object. The measurement is independent of the incident intensity on the projection grating and the reflectivity of the object to be measured, In experiments, the effectiveness of the position sensor is proved, and the root mean square (RMS) error at each measurement position is less than 13 nm.
文摘As one of the interesting optical techniques for measurements of the velocity,the spatial filtering method is treated briefly in this paper.We shown theoretical analysis and calculation of spatial filtering velocimetry,and discussed two-dimensional measurements of the velocity.About the data processing,we used A/D conversion and interfaced with a microcomputer,so that the data can be processed automatically by the microcomputer.The preliminary experiment was performed and the experimental results show the usefulness of the present method for measurements of the velocity.
文摘The theoretical model of spatial noise passing through a spatial filter is established in high power laser system under the small signal approximation. The transmission characteristic for a noise signal passing through spatial filters with different magnifications is analyzed by numerical simulation, according to the actual structure of the high power laser system. The results show that the spatial modulation period of low-frequency noise getting through the pinhole will be proportional to the magnification of the spatial filter. When the magnification is less than 1, the safe low-frequency noise will be extruded into the high-frequency region, which is the fast increasing part, and finally develops into the most dangerous part which can damage the optical devices. The conclusion of this research improves the relay imaging theory of a spatial filter and provides an important theoretical basis for a general design of high power laser systems.
基金supported by the information technology(IT)research and development program of MKE/KEIT(10041682Development of High-Definition 3D Image Processing Technologies Using Advanced Integral Imaging with Improved Depth Range)
文摘We propose a novel method of slice image reconstruction with controllable spatial filtering by using the correlation of periodic delta-function arrays (PDFAs) with elemental images in computational integral imaging. The multiple PDFAs, whose spatial periods correspond to object's depths with the elemental image array (EIA), can generate a set of spatially filtered EIAs for multiple object depths compared with the conventional method for the depth of a single object. We analyze a controllable spatial filtering effect by the proposed method. To show the feasibility of the proposed method, we carry out preliminary experiments for multiple objects and present the results.
文摘An approach to improving the performance of matched field localization by introducing a generalized spa-tial filter to suppress interference noise and pass the signal of interest with minimal distortion is presented. The spatial filter is designed by minimizing the maximum distortion of the filtered replica vectors within passband while guaran- teeing the norm of the filter response within the stopband to be lower than some given threshold values. We show that the design problem can be formulated as the second-order cone programming (SOCP) which can be solved efficiently via the well-established interior point method. A modified matched field processor is given to ultimately eliminate the effect of the distortion in the spatially filtered replica vectors. Computer simulation results confirm the effectiveness of the proposed approach by localizing a weak source in the pres-ence of a strong interferer and noise.
基金supported by the National Natural Science Foundation of China under Grants No.60973110,No.61003307the Natural Science Foundation of Beijing City of China under Grant No.4102059the Major Projects of Ministry of Industry and Information Technology under Grants No.2010ZX03006-002-03,No.2011ZX03005-005
文摘To mitigate the Non-Line-of-Sight (NLoS) error which seriously affects the localization accuracy and robustness in complex indoor environment,a novel Iterative Minimum Residual (IMR) based on the consistency hypothesis of the residual and the error is proposed in this paper.It chooses the best subset of measurements to calculate the coordinates of the unknown node by comparing the residuals obtained with different subsets of beacons.To reduce the time complexity of the IMR algorithm,Spatial Correlation Filter (SCF) is also proposed,which can remove the most serious NLoS distance with low calculation cost.Combined with the proposed SCF and IMR algorithm,nodes can be localized with high accuracy and low time complexity.Experimental results with real dataset demonstrate that the proposed algorithm can identify the NLoS range effectively with about 50% time cost of employing SCF only.
基金supported by the National Natural Science Foundation of China (Nos. 61431007 and 91320202)
文摘For Brain-Computer Interface(BCI) systems, improving the Information Transfer Rate(ITR) is a very critical issue. This study focuses on a Steady-State Visually Evoked Potential(SSVEP)-based BCI because of its advantage of high ITR. Unsupervised Canonical Correlation Analysis(CCA)-based method has been widely employed because of its high efficiency and easy implementation. In a recent study, an ensemble-CCA method based on individual training data was proposed and achieved an excellent performance with ITR of 267 bit/min.A 40-target SSVEP-BCI speller was investigated in this study, using an integration of Minimal-Distance(MD) and Maximal-Phase-locking value(MP) approaches. In the MD approach, a spatial filter is developed to minimize the distance between the training data and the reference sine signal, and in this study, two different types of distance were compared. In the MP approach, a spatial filter is developed to maximize the Phase-Locking Value(PLV)between the training calibration data and the reference sine signal. In addition to the fundamental frequency of stimulation, the harmonics were used to train MD and MP spatial filters, which formed spatial filter banks. The test data epoch was multiplied by the MP and MD spatial filter banks, and the distances and PLVs were extracted as features for recognition. Across 12 subjects with a 0.4 s-data length, the proposed method realized an average classification accuracy and ITR of 93% and 307 bit/min, respectively, which is significantly higher than the current state-of-the-art method. To the best of our knowledge, these results suggest that the proposed method has achieved the highest ITR in SSVEP-BCI studies.
文摘A spatial mask filter algorithm (SMF) for partial discharge (PD) pulse extraction is proposed in this paper. In this algorithm, firstly, a 'Teager' operator is used to strengthen wavelet coefficient local energy; then direct multiplication of coefficients at two adjacent scales is used to detect singularity points of the signal and to obtain scale based spatial mask filter; finally, an ' AND' logic operator is used in different filters to obtain the last spatial mask filter. By multiplication of wavelet coefficients with the final mask filter and wavelet reconstruction process, partial discharge pulses are extracted. The results of digital simulation and practical experiment show that this method is superior to traditional wavelet shrinkage method (TWS). This algorithm not only can increase the signal to noise ratio (SNR), but also can preserve the encrgy and pulse amplitude.
文摘To suppress the ground clutter for airborne early warning (AEW) radars is the key technique in radar signal processing. In this paper, a spatial-temporal nonadaptive joint filter processing approach is proposed to suppress the clutter for AEW radars, which can significantly reduce the computation compared with other optimal or suboptimal methods. The performance of this approach is better than that of the conventional cascaded nonadaptive processing, especially.
基金supported by the National Natural Science Foundation of China(40974012)the Special Foundation for Seismic Research(200808080)the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201156063)
文摘We obtained several displacement time series from the Sichuan permanent GPS net and processed the 1-Hz data observed during a few days before the 2008 Ms8.0 Wenchuan earthquake by double-difference instantaneous positioning technique. We filtered the data by the spatial stacking and the modified sidereal filte- ring methods to reduce correlation bias in space and time. The results indicate that these methods can improve the precision significantly.