The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination ...The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.展开更多
This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 199...This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.展开更多
The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be dete...The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be determined with the aid of a threat model which is used to restrict the expected ionospheric behavior. However, the spatial threat model at present widespread used, which is based on fit radius and relative centroid metric(RCM), is too conservative or the resulting GIVEs will be too large and will reduce the availability of satellite-based augmentation system(SBAS). In this paper, layered two-dimensional parameters, the vertical direction double RCMs, are introduced based on the spatial variability of the ionosphere. Comparing with the traditional threat model, the experimental results show that the user ionospheric vertical error(UIVE) average reduction rate reaches 16%. And the 95% protection level of conterminous United States(CONUS) is 28%, even under disturbed days, which reaches about 5% reduction rates.The results show that the system service performance has been improved better.展开更多
Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by u...Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by using kernel density estimation(KDE), spatial autocorrelation analysis(SAA), and spatial error model(SEM). Results showed that: 1) the spatial distribution of cold storage in China is unbalanced, and has evolved from ‘one core’ to ‘one core and many spots’, that is, ‘one core’ refers to the Bohai Rim region mainly including Beijing, Tianjin, Hebei, Shandong and Liaoning regions, and ‘many spots’ mainly include the high-density areas such as Shanghai, Fuzhou, Guangzhou, Zhengzhou, Hefei, Wuhan, ürümqi. 2) The distribution of cold storage has significant global spatial autocorrelation and local spatial autocorrelation, and the ‘High-High’ cluster area is the most stable, mainly concentrated in the Bohai Rim;the ‘Low-Low’ cluster area is grouped in the southern China. 3) Economic development level, population density, traffic accessibility, temperature and land price, all affect the location choice of cold storage in varying degrees, while the impact of market demand on it is not explicit.展开更多
提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的...提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的贝叶斯估计方法的有效性。展开更多
文摘The study aims to investigate county-level variations of the COVID-19 disease and vaccination rate. The COVID-19 data was acquired from usafact.org, and the vaccination records were acquired from the Ohio vaccination tracker dashboard. GIS-based exploratory analysis was conducted to select four variables (poverty, black race, population density, and vaccination) to explain COVID-19 occurrence during the study period. Consequently, spatial statistical techniques such as Moran’s I, Hot Spot Analysis, Spatial Lag Model (SLM), and Spatial Error Model (SEM) were used to explain the COVID-19 occurrence and vaccination rate across the 88 counties in Ohio. The result of the Local Moran’s I analysis reveals that the epicenters of COVID-19 and vaccination followed the same patterns. Indeed, counties like Summit, Franklin, Fairfield, Hamilton, and Medina were categorized as epicenters for both COVID-19 occurrence and vaccination rate. The SEM seems to be the best model for both COVID-19 and vaccination rates, with R2 values of 0.68 and 0.70, respectively. The GWR analysis proves to be better than Ordinary Least Squares (OLS), and the distribution of R2 in the GWR is uneven throughout the study area for both COVID-19 cases and vaccinations. Some counties have a high R2 of up to 0.70 for both COVID-19 cases and vaccinations. The outcomes of the regression analyses show that the SEM models can explain 68% - 70% of COVID-19 cases and vaccination across the entire counties within the study period. COVID-19 cases and vaccination rates exhibited significant positive associations with black race and poverty throughout the study area.
基金Under the auspices of National Natural Science Foundation of China(No.40601073,41101192,41201571)Fundamental Research Funds for the Central Universities(No.2011PY112,2011QC041,2011QC091)Huazhong Agricultural University Scientific&Technological Self-innovation Foundation(No.2011SC21)
文摘This study used spatial autoregression(SAR)model and geographically weighted regression(GWR)model to model the spatial patterns of farmland density and its temporal change in Gucheng County,Hubei Province,China in 1999 and 2009,and discussed the difference between global and local spatial autocorrelations in terms of spatial heterogeneity and non-stationarity.Results showed that strong spatial positive correlations existed in the spatial distributions of farmland density,its temporal change and the driving factors,and the coefficients of spatial autocorrelations decreased as the spatial lag distance increased.SAR models revealed the global spatial relations between dependent and independent variables,while the GWR model showed the spatially varying fitting degree and local weighting coefficients of driving factors and farmland indices(i.e.,farmland density and temporal change).The GWR model has smooth process when constructing the farmland spatial model.The coefficients of GWR model can show the accurate influence degrees of different driving factors on the farmland at different geographical locations.The performance indices of GWR model showed that GWR model produced more accurate simulation results than other models at different times,and the improvement precision of GWR model was obvious.The global and local farmland models used in this study showed different characteristics in the spatial distributions of farmland indices at different scales,which may provide the theoretical basis for farmland protection from the influence of different driving factors.
基金supported by the National Natural Science Foundation of China(41304024)
文摘The ionosphere, as the largest and least predictable error source, its behavior cannot be observed at all places simultaneously. The confidence bound, called the grid ionospheric vertical error(GIVE), can only be determined with the aid of a threat model which is used to restrict the expected ionospheric behavior. However, the spatial threat model at present widespread used, which is based on fit radius and relative centroid metric(RCM), is too conservative or the resulting GIVEs will be too large and will reduce the availability of satellite-based augmentation system(SBAS). In this paper, layered two-dimensional parameters, the vertical direction double RCMs, are introduced based on the spatial variability of the ionosphere. Comparing with the traditional threat model, the experimental results show that the user ionospheric vertical error(UIVE) average reduction rate reaches 16%. And the 95% protection level of conterminous United States(CONUS) is 28%, even under disturbed days, which reaches about 5% reduction rates.The results show that the system service performance has been improved better.
基金Under the auspices of the National Social Science Fund of China(No.15BGL185,19XJL004)General Project of Humanities and Social Sciences Research and Planning Fund of Ministry of Education(No.19YJA790097)+1 种基金Social Science Fund of Fujian Province(No.FJ2017C080)A Key Discipline of Henan University of Animal Husbandry and Economy‘Business Enterprise Management’(No.MXK2016201)。
文摘Cold storage is the vital infrastructure of cold chain logistics. In this study, we analyzed the spatial pattern evolution characteristics, spatial autocorrelation and influencing factors of cold storage in China by using kernel density estimation(KDE), spatial autocorrelation analysis(SAA), and spatial error model(SEM). Results showed that: 1) the spatial distribution of cold storage in China is unbalanced, and has evolved from ‘one core’ to ‘one core and many spots’, that is, ‘one core’ refers to the Bohai Rim region mainly including Beijing, Tianjin, Hebei, Shandong and Liaoning regions, and ‘many spots’ mainly include the high-density areas such as Shanghai, Fuzhou, Guangzhou, Zhengzhou, Hefei, Wuhan, ürümqi. 2) The distribution of cold storage has significant global spatial autocorrelation and local spatial autocorrelation, and the ‘High-High’ cluster area is the most stable, mainly concentrated in the Bohai Rim;the ‘Low-Low’ cluster area is grouped in the southern China. 3) Economic development level, population density, traffic accessibility, temperature and land price, all affect the location choice of cold storage in varying degrees, while the impact of market demand on it is not explicit.