Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model ...Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%.展开更多
The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conven...The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.展开更多
Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learn...Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.展开更多
In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses...In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.展开更多
基金Ministry of Science and Technology Basic Resources Survey Special Project,Grant/Award Number:2019FY100900High-level Hospital Construction Project,Grant/Award Number:DFJH2019015+2 种基金National Natural Science Foundation of China,Grant/Award Number:61871021Guangdong Natural Science Foundation,Grant/Award Number:2019A1515011676Beijing Key Laboratory of Robotics Bionic and Functional Research。
文摘Aiming at the problem that the existing models have a poor segmentation effect on imbalanced data sets with small-scale samples,a bilateral U-Net network model with a spatial attention mechanism is designed.The model uses the lightweight MobileNetV2 as the backbone network for feature hierarchical extraction and proposes an Attentive Pyramid Spatial Attention(APSA)module compared to the Attenuated Spatial Pyramid module,which can increase the receptive field and enhance the information,and finally adds the context fusion prediction branch that fuses high-semantic and low-semantic prediction results,and the model effectively improves the segmentation accuracy of small data sets.The experimental results on the CamVid data set show that compared with some existing semantic segmentation networks,the algorithm has a better segmentation effect and segmentation accuracy,and its mIOU reaches 75.85%.Moreover,to verify the generality of the model and the effectiveness of the APSA module,experiments were conducted on the VOC 2012 data set,and the APSA module improved mIOU by about 12.2%.
基金supported in part by the Science and Technology Innovation Project of CHN Energy Shuo Huang Railway Development Company Ltd(No.SHTL-22-28)the Beijing Natural Science Foundation Fengtai Urban Rail Transit Frontier Research Joint Fund(No.L231002)the Major Project of China State Railway Group Co.,Ltd.(No.K2023T003)。
文摘The detection of foreign object intrusion is crucial for ensuring the safety of railway operations.To address challenges such as low efficiency,suboptimal detection accuracy,and slow detection speed inherent in conventional comprehensive video monitoring systems for railways,a railway foreign object intrusion recognition and detection system is conceived and implemented using edge computing and deep learning technologies.In a bid to raise detection accuracy,the convolutional block attention module(CBAM),including spatial and channel attention modules,is seamlessly integrated into the YOLOv5 model,giving rise to the CBAM-YOLOv5 model.Furthermore,the distance intersection-over-union_non-maximum suppression(DIo U_NMS)algorithm is employed in lieu of the weighted nonmaximum suppression algorithm,resulting in improved detection performance for intrusive targets.To accelerate detection speed,the model undergoes pruning based on the batch normalization(BN)layer,and Tensor RT inference acceleration techniques are employed,culminating in the successful deployment of the algorithm on edge devices.The CBAM-YOLOv5 model exhibits a notable 2.1%enhancement in detection accuracy when evaluated on a selfconstructed railway dataset,achieving 95.0%for mean average precision(m AP).Furthermore,the inference speed on edge devices attains a commendable 15 frame/s.
基金The work was supported by the National Key R&D Program of China(Grant No.2020YFC1511601)Fundamental Research Funds for the Central Universities(Grant No.2019SHFWLC01).
文摘Existing almost deep learning methods rely on a large amount of annotated data, so they are inappropriate for forest fire smoke detection with limited data. In this paper, a novel hybrid attention-based few-shot learning method, named Attention-Based Prototypical Network, is proposed for forest fire smoke detection. Specifically, feature extraction network, which consists of convolutional block attention module, could extract high-level and discriminative features and further decrease the false alarm rate resulting from suspected smoke areas. Moreover, we design a metalearning module to alleviate the overfitting issue caused by limited smoke images, and the meta-learning network enables achieving effective detection via comparing the distance between the class prototype of support images and the features of query images. A series of experiments on forest fire smoke datasets and miniImageNet dataset testify that the proposed method is superior to state-of-the-art few-shot learning approaches.
基金the Key Project of Basic Research of Yunnan Province(No.202101AS070016)。
文摘In order to meet the requirements of accurate identification of surface defects on copper strip in industrial production,a detection model of surface defects based on machine vision,CSC-YOLO,is proposed.The model uses YOLOv4-tiny as the benchmark network.First,K-means clustering is introduced into the benchmark network to obtain anchor frames that match the self-built dataset.Second,a cross-region fusion module is introduced in the backbone network to solve the difficult target recognition problem by fusing contextual semantic information.Third,the spatial pyramid pooling-efficient channel attention network(SPP-E)module is introduced in the path aggregation network(PANet)to enhance the extraction of features.Fourth,to prevent the loss of channel information,a lightweight attention mechanism is introduced to improve the performance of the network.Finally,the performance of the model is improved by adding adjustment factors to correct the loss function for the dimensional characteristics of the surface defects.CSC-YOLO was tested on the self-built dataset of surface defects in copper strip,and the experimental results showed that the mAP of the model can reach 93.58%,which is a 3.37% improvement compared with the benchmark network,and FPS,although decreasing compared with the benchmark network,reached 104.CSC-YOLO takes into account the real-time requirements of copper strip production.The comparison experiments with Faster RCNN,SSD300,YOLOv3,YOLOv4,Resnet50-YOLOv4,YOLOv5s,YOLOv7,and other algorithms show that the algorithm obtains a faster computation speed while maintaining a higher detection accuracy.