期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进SparseInst路面裂缝实时检测算法
1
作者 王少杰 张继凯 庄琦 《内蒙古科技大学学报》 CAS 2024年第1期82-87,共6页
提出一种基于改进SparseInst网络的算法,以解决路面裂缝检测算法识别准确率低、检测实时性差等问题。通过引入SPM条带池化模块和MPM混合池化模块来提高细微裂缝分割效果,且同时加入CBAM模块和DCNv2卷积融入道路裂缝特点,提升裂纹识别完... 提出一种基于改进SparseInst网络的算法,以解决路面裂缝检测算法识别准确率低、检测实时性差等问题。通过引入SPM条带池化模块和MPM混合池化模块来提高细微裂缝分割效果,且同时加入CBAM模块和DCNv2卷积融入道路裂缝特点,提升裂纹识别完整性和准确性。同时,采用高斯模糊和OTSU阈值分割方法减少图像噪声加大背景和裂缝之间的差异,采用形态学方法将裂纹图像宽度变为单位像素值实现裂缝骨架化。实验结果显示,所提算法在AP,AP_(50),AP_(75)等指标上分别提升了3.5%,0.8%,2.1%,实际测量值误差在2.3%~13.3%之间,具有较高的有效性和实用性。 展开更多
关键词 道路裂缝 图像分割 sparseinst算法 卷积注意力模块
在线阅读 下载PDF
Real-time instance segmentation of tree trunks from under-canopy images in complex forest environments
2
作者 Chong Mo Wenlong Song +3 位作者 Weigang Li Guanglai Wang Yongkang Li Jianping Huang 《Journal of Forestry Research》 2025年第3期139-151,共13页
Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facili... Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk. 展开更多
关键词 Tree trunk detection Real-time instance segmentation sparseinst Under-canopy UAVs
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部