期刊文献+
共找到814篇文章
< 1 2 41 >
每页显示 20 50 100
A Bilinear Sparse Domination for the Maximal Calder´on Commutator with Rough Kernel
1
作者 WANG Meizhong ZHAO Junyan 《数学进展》 北大核心 2025年第5期1059-1074,共16页
LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional... LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained. 展开更多
关键词 Calderon commutator Fourier transform multiplier operator approximation bilinear sparse domination rough kernel
原文传递
Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking
2
作者 AN Qi-chang WANG Kun +2 位作者 LIU Xin-yue LI Hong-wen ZHU Jia-kang 《中国光学(中英文)》 北大核心 2025年第2期401-413,共13页
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ... To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects. 展开更多
关键词 stripe tracking wavefront aberration sparse aperture telescope co-phasing adjustment
在线阅读 下载PDF
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
3
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 Compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
4
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 sparse graph neural network Polar codes Bursty interference sparse factor graph Message passing neural network
在线阅读 下载PDF
Hysteresis modeling and compensation of piezo actuator with sparse regression
5
作者 JIN Yu WANG Xucheng +3 位作者 XU Yunlang YU Jianbo LU Qiaodan YANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第1期48-61,共14页
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato... Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved. 展开更多
关键词 sparse identification of nonlinear dynamics(SINDy) hysteresis loop relay operator sparse regression piezo actuator
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
6
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
Deblending by sparse inversion and its applications to high-productivity seismic acquisition:Case studies
7
作者 Shao-Hua Zhang Jia-Wen Song 《Petroleum Science》 2025年第4期1548-1565,共18页
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.... Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately. 展开更多
关键词 Deblending sparse inversion Simultaneous sources High-productivity Seismic acquisition
原文传递
Ship Path Planning Based on Sparse A^(*)Algorithm
8
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
9
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
A sparse moving array imaging approach for FMCW radar with dualaperture adaptive azimuth ambiguity suppression and adaptive QR decomposition
10
作者 Yanwen Han Xiaopeng Yan +3 位作者 Jiawei Wang Sheng Zheng Hongrui Yu Jian Dai 《Defence Technology(防务技术)》 2025年第8期254-271,共18页
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy... Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB. 展开更多
关键词 Frequency modulated continuous wave (FMCW) sparse motion array Range-azimuth imaging Azimuth ambiguity suppression DAAP Adaptive QR decomposition
在线阅读 下载PDF
Improved Spectral Amplitude Modulation Based on Sparse Feature Adaptive Convolution for Variable Speed Fault Diagnosis of Bearing
11
作者 Jiawei Lin Changkun Han +3 位作者 Wei Lu Liuyang Song Peng Chen Huaqing Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期31-43,共13页
Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplit... Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplitude modulation(ISAM)based on sparse feature adaptive convolution(SFAC)is proposed to enhance the fault features under variable speed conditions.First,an optimal bi-damped wavelet construction method is proposed to learn signal impulse features,which selects the optimal bi-damped wavelet parameters with correlation criterion and particle swarm optimization.Second,a convolutional basis pursuit denoising model based on an optimal bi-damped wavelet is proposed for resolving sparse impulses.A model regularization parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed.Then,an ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.Finally,the type of variable speed faults is determined by order spectrum analysis.Various experimental results,such as spectral amplitude modulation and Morlet wavelet matching,verify the effectiveness and advantages of the ISAM-SFAC method. 展开更多
关键词 bearing fault diagnosis feature enhancement sparse representation spectral amplitude modulation variable speed
在线阅读 下载PDF
Sensitivity Analysis of Structural Dynamic Behavior Based on the Sparse Polynomial Chaos Expansion and Material Point Method
12
作者 Wenpeng Li Zhenghe Liu +4 位作者 Yujing Ma Zhuxuan Meng Ji Ma Weisong Liu Vinh Phu Nguyen 《Computer Modeling in Engineering & Sciences》 2025年第2期1515-1543,共29页
This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-... This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems. 展开更多
关键词 Structural dynamics DEFORMATION material point method sparse polynomial chaos expansion adaptive randomized greedy algorithm sensitivity analysis
在线阅读 下载PDF
Improved Gabor transform and group sparse representation for ancient mural inpainting
13
作者 ZHAO Mengxue CHEN Yong TAO Meifeng 《Journal of Measurement Science and Instrumentation》 2025年第3期384-394,共11页
Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to struc... Sparse representation has been highly successful in various tasks related to image processing and computer vision.For ancient mural image inpainting,traditional group sparse representation models usually lead to structure blur and line discontinuity due to the construction of similarity group solely based on the Euclidean distance and the randomness of dictionary initialization.To address the aforementioned issues,an improved curvature Gabor transform and group sparse representation(CGabor-GSR)model for ancient Dunhuang mural inpainting is proposed.To begin with,mutual information is introduced to weight the Euclidean distance,and then the weighted Euclidean distance acts as a new standard of similarity group.Subsequently,to mitigate the randomness of dictionary initialization,a curvature Gabor wavelet transform is proposed to extract the features and initialize the feature dictionary with dimension reduction based on principal component analysis(PCA).Ultimately,singular value decomposition(SVD)and split Bregman iteration(SBI)can be used to resolve the CGabor-GSR model to reconstruct the mural images.Experimental results on Dunhuang mural inpainting demonstrate tha the proposed CGabor-GSR achieves a better performance than compared algorithms in both objective and visual evaluation. 展开更多
关键词 digital image processing mural inpainting curvature Gabor wavelet transform group sparse representation mutual information
在线阅读 下载PDF
Sparse optimization of planar radio antenna arrays using a genetic algorithm
14
作者 Jiarui Di Liang Dong Wei He 《Astronomical Techniques and Instruments》 2025年第2期100-110,共11页
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ... Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems. 展开更多
关键词 Planar antenna array sparse optimization Genetic algorithm Wide-angle scanning
在线阅读 下载PDF
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
15
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds sparse clouds Lightweight models
在线阅读 下载PDF
A CNN-Based Method for Sparse SAR Target Classification with Grad-CAM Interpretation
16
作者 JI Zhongyuan ZHANG Jingjing +1 位作者 LIU Zehao LI Guoxu 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期525-540,共16页
In recent years,deeps learning has been widely applied in synthetic aperture radar(SAR)image processing.However,the collection of large-scale labeled SAR images is challenging and costly,and the classification accurac... In recent years,deeps learning has been widely applied in synthetic aperture radar(SAR)image processing.However,the collection of large-scale labeled SAR images is challenging and costly,and the classification accuracy is often poor when only limited SAR images are available.To address this issue,we propose a novel framework for sparse SAR target classification under few-shot cases,termed the transfer learning-based interpretable lightweight convolutional neural network(TL-IL-CNN).Additionally,we employ enhanced gradient-weighted class activation mapping(Grad-CAM)to mitigate the“black box”effect often associated with deep learning models and to explore the mechanisms by which a CNN classifies various sparse SAR targets.Initially,we apply a novel bidirectional iterative soft thresholding(BiIST)algorithm to generate sparse images of superior quality compared to those produced by traditional matched filtering(MF)techniques.Subsequently,we pretrain multiple shallow CNNs on a simulated SAR image dataset.Using the sparse SAR dataset as input for the CNNs,we assess the efficacy of transfer learning in sparse SAR target classification and suggest the integration of TL-IL-CNN to enhance the classification accuracy further.Finally,Grad-CAM is utilized to provide visual explanations for the predictions made by the classification framework.The experimental results on the MSTAR dataset reveal that the proposed TL-IL-CNN achieves nearly 90%classification accuracy with only 20%of the training data required under standard operating conditions(SOC),surpassing typical deep learning methods such as vision Transformer(ViT)in the context of small samples.Remarkably,it even presents better performance under extended operating conditions(EOC).Furthermore,the application of Grad-CAM elucidates the CNN’s differentiation process among various sparse SAR targets.The experiments indicate that the model focuses on the target and the background can differ among target classes.The study contributes to an enhanced understanding of the interpretability of such results and enables us to infer the classification outcomes for each category more accurately. 展开更多
关键词 sparse synthetic aperture radar convolutional neural network(CNN) ensemble learning target classification SAR interpretation
在线阅读 下载PDF
An Efficient Synthesizing Method for Super-Massive Sparse Phased Array in Non-Terrestrial Network Applications
17
作者 Yin Haoyu Zhao Haiyan +2 位作者 Li Weidong Hao Zhangcheng Hong Wei 《China Communications》 2025年第10期1-11,共11页
In this paper,a method for designing supermassive sparse phased arrays(SMSPAs)known as the unitary modified matrix enhancement and matrix pencil(UMMEMP)method is proposed.In this method,an eigenvalue pairing method,wh... In this paper,a method for designing supermassive sparse phased arrays(SMSPAs)known as the unitary modified matrix enhancement and matrix pencil(UMMEMP)method is proposed.In this method,an eigenvalue pairing method,which is inspired by the modified MEMP,effectively pairs the repeated eigenvalues intractable in the unitary matrix pencil method,and it is more effective in determining the locations of elements in the sparse array.Three numerical examples and a full-wave validation are presented to demonstrate the effectiveness of the method,implemented via SMSPA,in achieving low sidelobe level wide-angle scanning radiation patterns,circular flattop radiation patterns,and ultra wide-angle scanning radiation patterns. 展开更多
关键词 Chebyshev array circular flat-top pattern pairing method super-massive sparse phased array ultra wide-angle scanning unitary modified matrix enhancement and matrix pencil
在线阅读 下载PDF
High Resolution Sparse Imaging and Doppler Parameter Estimation of Fucheng⁃1 SAR Satellite
18
作者 CAI Fuxuan ZHU Ziyi +1 位作者 SONG Yufan BI Hui 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第4期487-496,共10页
In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource man... In recent years,the development of domestic commercial synthetic aperture radar(SAR)is in full swing,with multiple commercial SAR satellites in orbit,showing great potential in disaster monitoring,natural resource management and deformation observation.Fucheng-1 is the first C-band commercial SAR satellite for interferometric SAR(InSAR)service developed by Spacety China,which marks the gradual maturity of China’s remote sensing data service.Based on the raw data collected by Fucheng-1,this paper firstly introduces the range-Doppler algorithm(RDA),then illustrates the parameter estimation method on the basis of fractional Fourier transform(FrFT)to realize the accurate estimation of azimuth chirp rate,which effectively improves imaging quality.Finally,the L1-norm regularization based sparse imaging method is utilized to reconstruct images from down-sampled data.Experimental results show that the sparse imaging algorithm can accurately reconstruct the down-sampled Fucheng-1 data and suppress sidelobes and clutter. 展开更多
关键词 Fucheng-1 synthetic aperture radar(SAR) sparse SAR imaging parameter estimation
在线阅读 下载PDF
SP-RF-ARIMA:A sparse random forest and ARIMA hybrid model for electric load forecasting
19
作者 Kamran Hassanpouri Baesmat Farhad Shokoohi Zeinab Farrokhi 《Global Energy Interconnection》 2025年第3期486-496,共11页
Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environment... Accurate Electric Load Forecasting(ELF)is crucial for optimizing production capacity,improving operational efficiency,and managing energy resources effectively.Moreover,precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption,downtime,and waste.However,with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors,no single approach has emerged as universally effective.In response,this research presents a hybrid modeling framework that combines the strengths of Random Forest(RF)and Autoregressive Integrated Moving Average(ARIMA)models,enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy(MRMRMS)method—to produce a sparse model.Additionally,the residual patterns are analyzed to enhance forecast accuracy.High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky(DEO&K)are used in this application.This methodology,termed SP-RF-ARIMA,is evaluated against existing approaches;it demonstrates more than 40%reduction in mean absolute error and root mean square error compared to the second-best method. 展开更多
关键词 optimizing production capacityimproving operational efficiencyand sparse random forest hybrid model electric load forecasting accurate electric load forecasting elf renewable energy integration ARIMA feature selection
在线阅读 下载PDF
Hierarchical Shape Pruning for 3D Sparse Convolution Networks
20
作者 Haiyan Long Chonghao Zhang +2 位作者 Xudong Qiu Hai Chen Gang Chen 《Computers, Materials & Continua》 2025年第8期2975-2988,共14页
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des... 3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems. 展开更多
关键词 Shape pruning model compressing 3D sparse convolution
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部