To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse lin...To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations.展开更多
This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combine...This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combined with some robust variable screening procedures such as RRCS and variable selection methods such as LAD-SCAD is used to obtain the submodel,and then the residual-based kernel density method is applied to estimate the error density through LAD regression.Under given conditions,the large sample properties of the estimator are also established.Especially,we explicitly give the relationship between the sparsity and the convergence rate of the kernel density estimator.The simulation results show that the proposed error density estimator has a good performance.A real data example is presented to illustrate our methods.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60502040)the Innovation Foundation for Outstanding Postgraduates in the Electronic Engineering Institute of PLA (No. 2009YB005)
文摘To reduce high computational cost of existing Direction-Of-Arrival(DOA) estimation techniques within a sparse representation framework,a novel method with low computational com-plexity is proposed.Firstly,a sparse linear model constructed from the eigenvectors of covariance matrix of array received signals is built.Then based on the FOCal Underdetermined System Solver(FOCUSS) algorithm,a sparse solution finding algorithm to solve the model is developed.Compared with other state-of-the-art methods using a sparse representation,our approach also can resolve closely and highly correlated sources without a priori knowledge of the number of sources.However,our method has lower computational complexity and performs better in low Signal-to-Noise Ratio(SNR).Lastly,the performance of the proposed method is illustrated by computer simulations.
基金Supported by the National Natural Science Foundation of China(Grant No.11971324)the State Key Program of National Natural Science Foundation of China(Grant No.12031016)。
文摘This paper focuses on error density estimation in ultrahigh dimensional sparse linear model,where the error term may have a heavy-tailed distribution.First,an improved two-stage refitted crossvalidation method combined with some robust variable screening procedures such as RRCS and variable selection methods such as LAD-SCAD is used to obtain the submodel,and then the residual-based kernel density method is applied to estimate the error density through LAD regression.Under given conditions,the large sample properties of the estimator are also established.Especially,we explicitly give the relationship between the sparsity and the convergence rate of the kernel density estimator.The simulation results show that the proposed error density estimator has a good performance.A real data example is presented to illustrate our methods.