Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n...Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.展开更多
Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based att...Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based attack methods are chosen to add perturbations on each pixel of the original image with the same weight,resulting in redundant noise in the adversarial examples,which makes them easier to be detected.Given this deliberation,a novel attentionguided sparse adversarial attack strategy with gradient dropout that can be readily incorporated with existing gradient-based methods is introduced to minimize the intensity and the scale of perturbations and ensure the effectiveness of adversarial examples at the same time.Specifically,in the gradient dropout phase,some relatively unimportant gradient information is randomly discarded to limit the intensity of the perturbation.In the attentionguided phase,the influence of each pixel on the model output is evaluated by using a soft mask-refined attention mechanism,and the perturbation of those pixels with smaller influence is limited to restrict the scale of the perturbation.After conducting thorough experiments on the NeurIPS 2017 adversarial dataset and the ILSVRC 2012 validation dataset,the proposed strategy holds the potential to significantly diminish the superfluous noise present in adversarial examples,all while keeping their attack efficacy intact.For instance,in attacks on adversarially trained models,upon the integration of the strategy,the average level of noise injected into images experiences a decline of 8.32%.However,the average attack success rate decreases by only 0.34%.Furthermore,the competence is possessed to substantially elevate the attack success rate by merely introducing a slight degree of perturbation.展开更多
In recent years, cyber attacks have posed great challenges to the development of cyber-physical systems. It is of great significance to study secure state estimation methods to ensure the safe and stable operation of ...In recent years, cyber attacks have posed great challenges to the development of cyber-physical systems. It is of great significance to study secure state estimation methods to ensure the safe and stable operation of the system. This paper proposes a secure state estimation for multi-input and multi-output continuous-time linear cyber-physical systems with sparse actuator and sensor attacks. First, for sparse sensor attacks, we propose an adaptive switching mechanism to mitigate the impact of sparse sensor attacks by filtering out their attack modes. Second, an unknown input sliding mode observer is designed to not only observe the system states, sensor attack signals, and measurement noise present in the system but also counteract the effects of sparse actuator attacks through an unknown input matrix. Finally, for the design of an unknown input sliding mode state observer, the feasibility of the observing system is demonstrated by means of Lyapunov functions. Additionally, simulation experiments are conducted to show the effectiveness of this method.展开更多
基金supported by Comunidad de Madrid within the framework of the Multiannual Agreement with Universidad Politécnica de Madrid to encourage research by young doctors(PRINCE).
文摘Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios.
基金Fundamental Research Funds for the Central Universities,China(No.2232021A-10)Shanghai Sailing Program,China(No.22YF1401300)+1 种基金Natural Science Foundation of Shanghai,China(No.20ZR1400400)Shanghai Pujiang Program,China(No.22PJ1423400)。
文摘Deep neural networks are extremely vulnerable to externalities from intentionally generated adversarial examples which are achieved by overlaying tiny noise on the clean images.However,most existing transfer-based attack methods are chosen to add perturbations on each pixel of the original image with the same weight,resulting in redundant noise in the adversarial examples,which makes them easier to be detected.Given this deliberation,a novel attentionguided sparse adversarial attack strategy with gradient dropout that can be readily incorporated with existing gradient-based methods is introduced to minimize the intensity and the scale of perturbations and ensure the effectiveness of adversarial examples at the same time.Specifically,in the gradient dropout phase,some relatively unimportant gradient information is randomly discarded to limit the intensity of the perturbation.In the attentionguided phase,the influence of each pixel on the model output is evaluated by using a soft mask-refined attention mechanism,and the perturbation of those pixels with smaller influence is limited to restrict the scale of the perturbation.After conducting thorough experiments on the NeurIPS 2017 adversarial dataset and the ILSVRC 2012 validation dataset,the proposed strategy holds the potential to significantly diminish the superfluous noise present in adversarial examples,all while keeping their attack efficacy intact.For instance,in attacks on adversarially trained models,upon the integration of the strategy,the average level of noise injected into images experiences a decline of 8.32%.However,the average attack success rate decreases by only 0.34%.Furthermore,the competence is possessed to substantially elevate the attack success rate by merely introducing a slight degree of perturbation.
基金supported by the National Science Foundation of China(Nos.62271293,61903238)the Natural Science Foundation of Shandong Province,China(No.ZR2021MF035)the Social Science Planning Project of Shandong Province,China(No.22CYYJ13).
文摘In recent years, cyber attacks have posed great challenges to the development of cyber-physical systems. It is of great significance to study secure state estimation methods to ensure the safe and stable operation of the system. This paper proposes a secure state estimation for multi-input and multi-output continuous-time linear cyber-physical systems with sparse actuator and sensor attacks. First, for sparse sensor attacks, we propose an adaptive switching mechanism to mitigate the impact of sparse sensor attacks by filtering out their attack modes. Second, an unknown input sliding mode observer is designed to not only observe the system states, sensor attack signals, and measurement noise present in the system but also counteract the effects of sparse actuator attacks through an unknown input matrix. Finally, for the design of an unknown input sliding mode state observer, the feasibility of the observing system is demonstrated by means of Lyapunov functions. Additionally, simulation experiments are conducted to show the effectiveness of this method.