Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. Howe...Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.展开更多
The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learnin...The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks.展开更多
Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyz...Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections.展开更多
文摘Extreme learning machine (ELM) is a feedforward neural network-based machine learning method that has the benefits of short training times, strong generalization capabilities, and will not fall into local minima. However, due to the traditional ELM shallow architecture, it requires a large number of hidden nodes when dealing with high-dimensional data sets to ensure its classification performance. The other aspect, it is easy to degrade the classification performance in the face of noise interference from noisy data. To improve the above problem, this paper proposes a double pseudo-inverse extreme learning machine (DPELM) based on Sparse Denoising AutoEncoder (SDAE) namely, SDAE-DPELM. The algorithm can directly determine the input weight and output weight of the network by using the pseudo-inverse method. As a result, the algorithm only requires a few hidden layer nodes to produce superior classification results when classifying data. And its combination with SDAE can effectively improve the classification performance and noise resistance. Extensive numerical experiments show that the algorithm has high classification accuracy and good robustness when dealing with high-dimensional noisy data and high-dimensional noiseless data. Furthermore, applying such an algorithm to Miao character recognition substantiates its excellent performance, which further illustrates the practicability of the algorithm.
文摘The increasingly complex and interconnected train control information network is vulnerable to a variety of malicious traffic attacks,and the existing malicious traffic detection methods mainly rely on machine learning,such as poor robustness,weak generalization,and a lack of ability to learn common features.Therefore,this paper proposes a malicious traffic identification method based on stacked sparse denoising autoencoders combined with a regularized extreme learning machine through particle swarm optimization.Firstly,the simulation environment of the Chinese train control system-3,was constructed for data acquisition.Then Pearson coefficient and other methods are used for pre-processing,then a stacked sparse denoising autoencoder is used to achieve nonlinear dimensionality reduction of features,and finally regularization extreme learning machine optimized by particle swarm optimization is used to achieve classification.Experimental data show that the proposed method has good training performance,with an average accuracy of 97.57%and a false negative rate of 2.43%,which is better than other alternative methods.In addition,ablation experiments were performed to evaluate the contribution of each component,and the results showed that the combination of methods was superior to individual methods.To further evaluate the generalization ability of the model in different scenarios,publicly available data sets of industrial control system networks were used.The results show that the model has robust detection capability in various types of network attacks.
基金supported by Key research Project of higher education institutions in Henan Province(Project:Name:A Study on Students’concentration in Class Based on Deep Multi-task Learning Framework,Project No.23B413004)the Science and Technology Project No.222102310222.
文摘Against the background of regular epidemic prevention and control,in order to ensure the return of teachers to work,students to return to school and safe operation of schools,the risk of disease transmission is analyzed in key areas such as university canoons,auditoriums,teaching buildings and dormitories.The risk model of epidemic transmission in key regions of universities is established based on the improved SEIR model,considering the four groups of people,namely susceptible,latent,infected and displaced,and their mutual transformation relationship.After feature post-processing,the selected feature parameters are processed with monotone non-decreasing and smoothing,and used as noise-free samples of stacked sparse denoising automatic coding network to train the network.Then,the feature vectors after dimensionality reduction of the stacked sparse denoising automatic coding network are used as the input of the multi-hidden layer back-propagation neural network,and these features are used as tags to carry out fitting training for the network.The results show that the implementation of control measures can reduce the number of contacts between infected people and susceptible people,reduce the transmission rate of single contact,and reduce the peak number of infected people and latent people by 61%and 72%respectively,effectively controlling the disease spread in key regions of universities.Our method is able to accurately predict the number of infections.