期刊文献+
共找到1,557篇文章
< 1 2 78 >
每页显示 20 50 100
An NOMA-VLC power allocation scheme for multi-user based on sparrow search algorithm
1
作者 WANG Xing WANG Haitao +3 位作者 DONG Zhenliang XIONG Yingfei SHI Huili WANG Ping 《Optoelectronics Letters》 2025年第5期278-283,共6页
A non-orthogonal multiple access(NOMA) power allocation scheme on the basis of the sparrow search algorithm(SSA) is proposed in this work. Specifically, the logarithmic utility function is utilized to address the pote... A non-orthogonal multiple access(NOMA) power allocation scheme on the basis of the sparrow search algorithm(SSA) is proposed in this work. Specifically, the logarithmic utility function is utilized to address the potential fairness issue that may arise from the maximum sum-rate based objective function and the optical power constraints are set considering the non-negativity of the transmit signal, the requirement of the human eyes safety and all users' quality of service(Qo S). Then, the SSA is utilized to solve this optimization problem. Moreover, to demonstrate the superiority of the proposed strategy, it is compared with the fixed power allocation(FPA) and the gain ratio power allocation(GRPA) schemes. Results show that regardless of the number of users considered, the sum-rate achieved by SSA consistently outperforms that of FPA and GRPA schemes. Specifically, compared to FPA and GRPA schemes, the sum-rate obtained by SSA is increased by 40.45% and 53.44% when the number of users is 7, respectively. The proposed SSA also has better performance in terms of user fairness. This work will benefit the design and development of the NOMA-visible light communication(VLC) systems. 展开更多
关键词 NOMA logarithmic utility function VLC sparrow search algorithm sparrow search algorithm ssa fairness issue power allocation Sum Rate
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
2
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry sparrow search algorithm
在线阅读 下载PDF
Optimized control of grid-connected photovoltaic systems:Robust PI controller based on sparrow search algorithm for smart microgrid application
3
作者 Youssef Akarne Ahmed Essadki +2 位作者 Tamou Nasser Maha Annoukoubi Ssadik Charadi 《Global Energy Interconnection》 2025年第4期523-536,共14页
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi... The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems. 展开更多
关键词 Smart microgrid Photovoltaic system PI controller sparrow search algorithm GRID-CONNECTED Metaheuristic optimization
在线阅读 下载PDF
NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization
4
作者 Hui Lv Yuer Yang Yifeng Lin 《Computers, Materials & Continua》 2025年第10期925-953,共29页
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ... It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design. 展开更多
关键词 sparrow search algorithm multi-strategy fusion T-DISTRIBUTION elite retention strategy wilcoxon rank-sum test
在线阅读 下载PDF
A Clustering Model Based on Density Peak Clustering and the Sparrow Search Algorithm for VANETs
5
作者 Chaoliang Wang Qi Fu Zhaohui Li 《Computers, Materials & Continua》 2025年第8期3707-3729,共23页
Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead... Cluster-basedmodels have numerous application scenarios in vehicular ad-hoc networks(VANETs)and can greatly help improve the communication performance of VANETs.However,the frequent movement of vehicles can often lead to changes in the network topology,thereby reducing cluster stability in urban scenarios.To address this issue,we propose a clustering model based on the density peak clustering(DPC)method and sparrow search algorithm(SSA),named SDPC.First,the model constructs a fitness function based on the parameters obtained from the DPC method and deploys the SSA for iterative optimization to select cluster heads(CHs).Then,the vehicles that have not been selected as CHs are assigned to appropriate clusters by comprehensively considering the distance parameter and link-reliability parameter.Finally,cluster maintenance strategies are considered to tackle the changes in the clusters’organizational structure.To verify the performance of the model,we conducted a simulation on a real-world scenario for multiple metrics related to clusters’stability.The results show that compared with the APROVE and the GAPC,SDPC showed clear performance advantages,indicating that SDPC can effectively ensure VANETs’cluster stability in urban scenarios. 展开更多
关键词 VANETS CLUSTER density peak clustering sparrow search algorithm
在线阅读 下载PDF
Winter Wheat Yield Estimation Based on Sparrow Search Algorithm Combined with Random Forest:A Case Study in Henan Province,China 被引量:1
6
作者 SHI Xiaoliang CHEN Jiajun +2 位作者 DING Hao YANG Yuanqi ZHANG Yan 《Chinese Geographical Science》 SCIE CSCD 2024年第2期342-356,共15页
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r... Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield. 展开更多
关键词 winter wheat yield estimation sparrow search algorithm combined with random forest(SSA-RF) machine learning multi-source indicator optimal lead time Henan Province China
在线阅读 下载PDF
Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm 被引量:1
7
作者 Xiaoge Wei Yuming Zhang +2 位作者 Huaitao Song Hengjie Qin Guanjun Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1295-1316,共22页
Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Fi... Reducing casualties and property losses through effective evacuation route planning has been a key focus for researchers in recent years.As part of this effort,an enhanced sparrow search algorithm(MSSA)was proposed.Firstly,the Golden Sine algorithm and a nonlinear weight factor optimization strategy were added in the discoverer position update stage of the SSA algorithm.Secondly,the Cauchy-Gaussian perturbation was applied to the optimal position of the SSA algorithm to improve its ability to jump out of local optima.Finally,the local search mechanism based on the mountain climbing method was incorporated into the local search stage of the SSA algorithm,improving its local search ability.To evaluate the effectiveness of the proposed algorithm,the Whale Algorithm,Gray Wolf Algorithm,Improved Gray Wolf Algorithm,Sparrow Search Algorithm,and MSSA Algorithm were employed to solve various test functions.The accuracy and convergence speed of each algorithm were then compared and analyzed.The results indicate that the MSSA algorithm has superior solving ability and stability compared to other algorithms.To further validate the enhanced algorithm’s capabilities for path planning,evacuation experiments were conducted using different maps featuring various obstacle types.Additionally,a multi-exit evacuation scenario was constructed according to the actual building environment of a teaching building.Both the sparrow search algorithm and MSSA algorithm were employed in the simulation experiment for multiexit evacuation path planning.The findings demonstrate that the MSSA algorithm outperforms the comparison algorithm,showcasing its greater advantages and higher application potential. 展开更多
关键词 sparrow search algorithm optimization and improvement function test set evacuation path planning
在线阅读 下载PDF
Multi-Strategy Improvement of Sparrow Search Algorithm for Cloud Manufacturing Service Composition
8
作者 ZHOU Liliang LI Ben +2 位作者 YU Qing DAI Guilan ZHOU Guofu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第4期323-337,共15页
In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-... In existing research,the optimization of algorithms applied to cloud manufacturing service composition based on the quality of service often suffers from decreased convergence rates and solution quality due to single-population searches in fixed spaces and insufficient information exchange.In this paper,we introduce an improved Sparrow Search Algorithm(ISSA)to address these issues.The fixed solution space is divided into multiple subspaces,allowing for parallel searches that expedite the discovery of target solutions.To enhance search efficiency within these subspaces and significantly improve population diversity,we employ multiple group evolution mechanisms and chaotic perturbation strategies.Furthermore,we incorporate adaptive weights and a global capture strategy based on the golden sine to guide individual discoverers more effectively.Finally,differential Cauchy mutation perturbation is utilized during sparrow position updates to strengthen the algorithm's global optimization capabilities.Simulation experiments on benchmark problems and service composition optimization problems show that the ISSA delivers superior optimization accuracy and convergence stability compared to other methods.These results demonstrate that our approach effectively balances global and local search abilities,leading to enhanced performance in cloud manufacturing service composition. 展开更多
关键词 cloud manufacturing service composition optimization quality of service sparrow search algorithm
原文传递
A Modified Self-Adaptive Sparrow Search Algorithm for Robust Multi-UAV Path Planning
9
作者 SUN Zhiyuan SHEN Bo +2 位作者 PAN Anqi XUE Jiankai MA Yuhang 《Journal of Donghua University(English Edition)》 CAS 2024年第6期630-643,共14页
With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execu... With the advancement of technology,the collaboration of multiple unmanned aerial vehicles(multi-UAVs)is a general trend,both in military and civilian domains.Path planning is a crucial step for multi-UAV mission execution,it is a nonlinear problem with constraints.Traditional optimization algorithms have difficulty in finding the optimal solution that minimizes the cost function under various constraints.At the same time,robustness should be taken into account to ensure the reliable and safe operation of the UAVs.In this paper,a self-adaptive sparrow search algorithm(SSA),denoted as DRSSA,is presented.During optimization,a dynamic population strategy is used to allocate the searching effort between exploration and exploitation;a t-distribution perturbation coefficient is proposed to adaptively adjust the exploration range;a random learning strategy is used to help the algorithm from falling into the vicinity of the origin and local optimums.The convergence of DRSSA is tested by 29 test functions from the Institute of Electrical and Electronics Engineers(IEEE)Congress on Evolutionary Computation(CEC)2017 benchmark suite.Furthermore,a stochastic optimization strategy is introduced to enhance safety in the path by accounting for potential perturbations.Two sets of simulation experiments on multi-UAV path planning in three-dimensional environments demonstrate that the algorithm exhibits strong optimization capabilities and robustness in dealing with uncertain situations. 展开更多
关键词 multiple unmanned aerial vehicle(multi-UAV) path planning sparrow search algorithm(SSA) stochastic optimization
在线阅读 下载PDF
The Chaos Sparrow Search Algorithm:Multi-layer and Multi-pass Welding Robot Trajectory Optimization for Medium and Thick Plates
10
作者 Song Mu Jianyong Wang Chunyang Mu 《Journal of Bionic Engineering》 CSCD 2024年第5期2602-2618,共17页
The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,suc... The welding of medium and thick plates has a wide range of applications in the engineering field.Industrial welding robots are gradually replacing traditional welding operations due to their significant advantages,such as high welding quality,high work efficiency,and effective reduction of labor intensity.Ensuring the accuracy of the welding trajectory for the welding robot is crucial for guaranteeing welding quality.In this paper,the author uses the chaos sparrow search algorithm to optimize the trajectory of a multi-layer and multi-pass welding robot for medium and thick plates.Firstly,the Sparrow Search Algorithm(SSA)is improved by introducing tent chaotic mapping and Gaussian mutation of the inertia weight factor.Secondly,in order to prevent the welding robot arm from colliding with obstacles in the welding environment during the welding process,maintain the stability of the welding robot,and ensure the continuous stability of the changes in each joint angle,joint angular velocity,and angular velocity of the joint angle,a welding robot model is established by improving the Denavit-Hartenberg parameter method.A multi-objective optimization fitness function is used to optimize the trajectory of the welding robot,minimizing time and energy consumption.Thirdly,the optimization and convergence performance of SSA and Chaos Sparrow Search Algorithm(CSSA)are compared through 10 benchmark test functions.Based on the six sets of test functions,the CSSA algorithm consistently maintains superior optimization performance and has excellent stability,with a faster decline in the convergence curve compared to the SSA algorithm.Finally,the accuracy of welding is tested through V-shaped multi-layer and multi-pass welding experiments.The experimental results show that the CSSA algorithm has a strong superiority in trajectory optimization of multi-layer and multi-pass welding for medium and thick plates,with an accuracy rate of 99.5%.It is an effective optimization method that can meet the actual needs of production. 展开更多
关键词 Medium and thick plates The Chaos sparrow search algorithm Welding robot Tent chaotic mapping Denavit-Hartenberg Trajectory optimization
在线阅读 下载PDF
A Chaos Sparrow Search Algorithm with Logarithmic Spiral and Adaptive Step for Engineering Problems 被引量:12
11
作者 Andi Tang Huan Zhou +1 位作者 Tong Han Lei Xie 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期331-364,共34页
The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence spe... The sparrow search algorithm(SSA)is a newly proposed meta-heuristic optimization algorithm based on the sparrowforaging principle.Similar to other meta-heuristic algorithms,SSA has problems such as slowconvergence speed and difficulty in jumping out of the local optimum.In order to overcome these shortcomings,a chaotic sparrow search algorithm based on logarithmic spiral strategy and adaptive step strategy(CLSSA)is proposed in this paper.Firstly,in order to balance the exploration and exploitation ability of the algorithm,chaotic mapping is introduced to adjust the main parameters of SSA.Secondly,in order to improve the diversity of the population and enhance the search of the surrounding space,the logarithmic spiral strategy is introduced to improve the sparrow search mechanism.Finally,the adaptive step strategy is introduced to better control the process of algorithm exploitation and exploration.The best chaotic map is determined by different test functions,and the CLSSA with the best chaotic map is applied to solve 23 benchmark functions and 3 classical engineering problems.The simulation results show that the iterative map is the best chaotic map,and CLSSA is efficient and useful for engineering problems,which is better than all comparison algorithms. 展开更多
关键词 sparrow search algorithm global optimization adaptive step benchmark function chaos map
在线阅读 下载PDF
Optimizing slope safety factor prediction via stacking using sparrow search algorithm for multi-layer machine learning regression models 被引量:2
12
作者 SHUI Kuan HOU Ke-peng +2 位作者 HOU Wen-wen SUN Jun-long SUN Hua-fen 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2852-2868,共17页
The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration o... The safety factor is a crucial quantitative index for evaluating slope stability.However,the traditional calculation methods suffer from unreasonable assumptions,complex soil composition,and inadequate consideration of the influencing factors,leading to large errors in their calculations.Therefore,a stacking ensemble learning model(stacking-SSAOP)based on multi-layer regression algorithm fusion and optimized by the sparrow search algorithm is proposed for predicting the slope safety factor.In this method,the density,cohesion,friction angle,slope angle,slope height,and pore pressure ratio are selected as characteristic parameters from the 210 sets of established slope sample data.Random Forest,Extra Trees,AdaBoost,Bagging,and Support Vector regression are used as the base model(inner loop)to construct the first-level regression algorithm layer,and XGBoost is used as the meta-model(outer loop)to construct the second-level regression algorithm layer and complete the construction of the stacked learning model for improving the model prediction accuracy.The sparrow search algorithm is used to optimize the hyperparameters of the above six regression models and correct the over-and underfitting problems of the single regression model to further improve the prediction accuracy.The mean square error(MSE)of the predicted and true values and the fitting of the data are compared and analyzed.The MSE of the stacking-SSAOP model was found to be smaller than that of the single regression model(MSE=0.03917).Therefore,the former has a higher prediction accuracy and better data fitting.This study innovatively applies the sparrow search algorithm to predict the slope safety factor,showcasing its advantages over traditional methods.Additionally,our proposed stacking-SSAOP model integrates multiple regression algorithms to enhance prediction accuracy.This model not only refines the prediction accuracy of the slope safety factor but also offers a fresh approach to handling the intricate soil composition and other influencing factors,making it a precise and reliable method for slope stability evaluation.This research holds importance for the modernization and digitalization of slope safety assessments. 展开更多
关键词 Multi-layer regression algorithm fusion Stacking gensemblelearning sparrow search algorithm Slope safety factor Data prediction
原文传递
Predicting buckling of carbon fiber composite cylindrical shells based on backpropagation neural network improved by sparrow search algorithm
13
作者 Wei Guan Yong-mei Zhu +1 位作者 Jun-jie Bao Jian Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第12期2459-2470,共12页
The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner dia... The buckling load of carbon fiber composite cylindrical shells(CF-CCSs)was predicted using a backpropagation neural network improved by the sparrow search algorithm(SSA-BPNN).Firstly,two CF-CCSs,each with an inner diameter of 100 mm,were manufactured and tested.The buckling behavior of CF-CCSs was analyzed by finite element and experiment.Subsequently,the effects of ply angle and length–diameter ratio on buckling load of CF-CCSs were analyzed,and the dataset of the neural network was generated using the finite element method.On this basis,the SSA-BPNN model for predicting buckling load of CF-CCS was established.The results show that the maximum and average errors of the SSA-BPNN to the test data are 6.88%and 2.24%,respectively.The buckling load prediction for CF-CCSs based on SSA-BPNN has satisfactory generalizability and can be used to analyze buckling loads on cylindrical shells of carbon fiber composites. 展开更多
关键词 Composite cylindrical shell:Carbon fiber Backpropagation neural network sparrow search algorithm BUCKLING
原文传递
Detection of micro-water in transformer oil based on ultrasonic pulse-echo method and sparrow search algorithm-random forest
14
作者 Ziwen Huang Lufen Jia +2 位作者 Wenwen Gu Weigen Chen Qu Zhou 《High Voltage》 2025年第4期917-929,共13页
This study proposes a novel transformer oil micro-water detection method based on the ultrasonic pulse-echo technique,optimised by a sparrow search algorithm(SSA)to enhance the prediction performance of a random fores... This study proposes a novel transformer oil micro-water detection method based on the ultrasonic pulse-echo technique,optimised by a sparrow search algorithm(SSA)to enhance the prediction performance of a random forest(RF)model.Initially,finite element simulations were conducted to select optimal ultrasonic frequencies of 2 and 2.5 MHz.An accelerated thermal ageing experiment was performed using#25 Karamay oil samples,and ultrasonic pulse-echo signals were collected via a custom-built detection platform.Variational mode decomposition was employed to extract effective echoes from the raw pulse-echo signals.Temporal and frequency domain analyses yielded 162 dimensional features,which were subsequently filtered to 88 key parameters using the maximum information coefficient method.A transformer oil micro-water detection model was then developed by integrating the SSA with RF and trained using K-fold cross-validation.The model achieved an impressive average prediction accuracy of 97.34%over 10 cross-validation runs.The testing set demonstrated a prediction accuracy of 96.40%,a remarkable improvement of 16.53%compared to the unoptimised RF model.The findings provide a solid foundation for the rapid detection of micro-water content in transformer oil using the ultrasonic pulse-echo method. 展开更多
关键词 element simulations ultrasonic pulse echo sparrow search algorithm Random Forest enhance prediction performance Micro water detection Transformer oil sparrow search algorithm ssa
在线阅读 下载PDF
Research on Kapur multi-threshold image segmentation based on improved sparrow search algorithm
15
作者 Wu Jin Feng Haoran +1 位作者 Chong Gege Xiong Hao 《The Journal of China Universities of Posts and Telecommunications》 2025年第2期31-43,共13页
Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighti... Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighting the need for more efficient and stable methods.An improved sparrow search algorithm(ISSA)that combines multiple strategies to address the dependency on the initial population and solution accuracy issues in the basic sparrow search algorithm(SSA)was proposed in this paper.ISSA leverages circle chaotic mapping to enhance population diversity,a tangent flight operator to improve search diversity,and a triangular random walk to perturb the optimal solution,thereby enhancing global search capability and avoiding local optima.Performance evaluations on 16 benchmark functions demonstrate that ISSA surpasses the gray wolf optimizer(GWO),whale optimization algorithm(WOA),rat swarm optimizer(RSO),moth-flame optimization(MFO),and SSA in terms of search speed,accuracy,and robustness.When applied to multilevel threshold image segmentation,ISSA excels in Kapur's maximum entropy,peak signal-to-noise ratio(PSNR),structural similarity(SSIM),and feature similarity(FSIM),highlighting its significant research value and application potential in the field of image segmentation. 展开更多
关键词 image segmentation sparrow search algorithm(SSA) MULTI-THRESHOLD Kapur's maximum entropy
原文传递
Adaptive mutation sparrow search algorithm-Elman-AdaBoost model for predicting the deformation of subway tunnels 被引量:5
16
作者 Xiangzhen Zhou Wei Hu +3 位作者 Zhongyong Zhang Junneng Ye Chuang Zhao Xuecheng Bian 《Underground Space》 SCIE EI CSCD 2024年第4期320-360,共41页
A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent ... A novel coupled model integrating Elman-AdaBoost with adaptive mutation sparrow search algorithm(AM-SSA),called AMSSAElman-AdaBoost,is proposed for predicting the existing metro tunnel deformation induced by adjacent deep excavations in soft ground.The novelty is that the modified SSA proposes adaptive adjustment strategy to create a balance between the capacity of exploitation and exploration.In AM-SSA,firstly,the population is initialized by cat mapping chaotic sequences to improve the ergodicity and randomness of the individual sparrow,enhancing the global search ability.Then the individuals are adjusted by Tent chaotic disturbance and Cauchy mutation to avoid the population being too concentrated or scattered,expanding the local search ability.Finally,the adaptive producer-scrounger number adjustment formula is introduced to balance the ability to seek the global and local optimal.In addition,it leads to the improved algorithm achieving a better accuracy level and convergence speed compared with the original SSA.To demonstrate the effectiveness and reliability of AM-SSA,23 classical benchmark functions and 25 IEEE Congress on Evolutionary Computation benchmark test functions(CEC2005),are employed as the numerical examples and investigated in comparison with some wellknown optimization algorithms.The statistical results indicate the promising performance of AM-SSA in a variety of optimization with constrained and unknown search spaces.By utilizing the AdaBoost algorithm,multiple sets of weak AMSSA-Elman predictor functions are restructured into one strong predictor by successive iterations for the tunnel deformation prediction output.Additionally,the on-site monitoring data acquired from a deep excavation project in Ningbo,China,were selected as the training and testing sample.Meanwhile,the predictive outcomes are compared with those of other different optimization and machine learning techniques.In the end,the obtained results in this real-world geotechnical engineering field reveal the feasibility of the proposed hybrid algorithm model,illustrating its power and superiority in terms of computational efficiency,accuracy,stability,and robustness.More critically,by observing data in real time on daily basis,the structural safety associated with metro tunnels could be supervised,which enables decision-makers to take concrete control and protection measures. 展开更多
关键词 Adjacent deep excavations Existing subway tunnels Adaptive mutation sparrow search algorithm Metaheuristic optimization Benchmark test functions Elman neural networks
在线阅读 下载PDF
3D Path Planning of the Solar Powered UAV in the Urban-Mountainous Environment with Multi-Objective and Multi-Constraint Based on the Enhanced Sparrow Search Algorithm Incorporating the Levy Flight Strategy 被引量:2
17
作者 Pengyang Xie Ben Ma +2 位作者 Bingbing Wang Jian Chen Gang Xiao 《Guidance, Navigation and Control》 2024年第1期149-175,共27页
In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous env... In response to practical application challenges in utilizing solar-powered unmanned aerial vehicle(UAV)for remote sensing,this study presents a three-dimensional path planning method tailored for urban-mountainous environment.Taking into account constraints related to the solar-powered UAV,terrain,and mission objectives,a multi-objective trajectory optimization model is transferred into a single-objective optimization problem with weight factors and multiconstraint and is developed with a focus on three key indicators:minimizing trajectory length,maximizing energy flow efficiency,and minimizing regional risk levels.Additionally,an enhanced sparrow search algorithm incorporating the Levy flight strategy(SSA-Levy)is introduced to address trajectory planning challenges in such complex environments.Through simulation,the proposed algorithm is compared with particle swarm optimization(PSO)and the regular sparrow search algorithm(SSA)across 17 standard test functions and a simplified simulation of urban-mountainous environments.The results of the simulation demonstrate the superior effectiveness of the designed improved SSA based on the Levy flight strategy for solving the established single-objective trajectory optimization model. 展开更多
关键词 Solar powered UAV multi-objective optimization problem single-objective optimization problem multi-constraint sparrow search algorithm Levy flight strategy
在线阅读 下载PDF
Resource allocation in vehicular network based on sparrow search algorithm and hyper-graph in the presence of multiple cellular users 被引量:1
18
作者 Lin Kang Jie Wang +1 位作者 Junjie Chen Di Yang 《International Journal of Intelligent Computing and Cybernetics》 2024年第2期415-435,共21页
Purpose-Since the performance of vehicular users and cellular users(CUE)in Vehicular networks is highly affected by the allocated resources to them.The purpose of this paper is to investigate the resource allocation f... Purpose-Since the performance of vehicular users and cellular users(CUE)in Vehicular networks is highly affected by the allocated resources to them.The purpose of this paper is to investigate the resource allocation for vehicular communications when multiple V2V links and a V2I link share spectrum with CUE in uplink communication under different Quality of Service(QoS).Design/methodology/approach-An optimization model to maximize the V2I capacity is established based on slowly varying large-scale fading channel information.Multiple V2V links are clustered based on sparrow search algorithm(SSA)to reduce interference.Then,a weighted tripartite graph is constructed by jointly optimizing the power of CUE,V2I and V2V clusters.Finally,spectrum resources are allocated based on a weighted 3D matching algorithm.Findings-The performance of the proposed algorithm is tested.Simulation results show that the proposed algorithm can maximize the channel capacity of V2I while ensuring the reliability of V2V and the quality of service of CUE.Originality/value-There is a lack of research on resource allocation algorithms of CUE,V2I and multiple V2V in different QoS.To solve the problem,one new resource allocation algorithm is proposed in this paper.Firstly,multiple V2V links are clustered using SSA to reduce interference.Secondly,the power allocation of CUE,V2I and V2V is jointly optimized.Finally,the weighted 3D matching algorithm is used to allocate spectrum resources. 展开更多
关键词 V2V V2I CUE Resource allocation sparrow search algorithm 3D matching
在线阅读 下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
19
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKELM) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
MSSSA:a multi-strategy enhanced sparrow search algorithm for global optimization 被引量:6
20
作者 Kai MENG Chen CHEN Bin XIN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第12期1828-1847,共20页
The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between ... The sparrow search algorithm(SSA) is a recent meta-heuristic optimization approach with the advantages of simplicity and flexibility. However, SSA still faces challenges of premature convergence and imbalance between exploration and exploitation, especially when tackling multimodal optimization problems. Aiming to deal with the above problems, we propose an enhanced variant of SSA called the multi-strategy enhanced sparrow search algorithm(MSSSA) in this paper. First, a chaotic map is introduced to obtain a high-quality initial population for SSA, and the opposition-based learning strategy is employed to increase the population diversity. Then, an adaptive parameter control strategy is designed to accommodate an adequate balance between exploration and exploitation. Finally, a hybrid disturbance mechanism is embedded in the individual update stage to avoid falling into local optima. To validate the effectiveness of the proposed MSSSA, a large number of experiments are implemented, including 40 complex functions from the IEEE CEC2014 and IEEE CEC2019 test suites and 10 classical functions with different dimensions. Experimental results show that the MSSSA achieves competitive performance compared with several state-of-the-art optimization algorithms. The proposed MSSSA is also successfully applied to solve two engineering optimization problems. The results demonstrate the superiority of the MSSSA in addressing practical problems. 展开更多
关键词 Swarm intelligence sparrow search algorithm Adaptive parameter control strategy Hybrid disturbance mechanism Optimization problems
原文传递
上一页 1 2 78 下一页 到第
使用帮助 返回顶部