As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their...As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their spatiotemporal variations,is still limited.In the present study,variations in the social structure of an endangered Indo-Pacific humpback dolphin population in Xiamen Bay,China,were monitored over two distinct periods(2007–2010 and 2017–2019)to analyze the effects of habitat utilization and the composition of individuals within the population.In both periods,the population demonstrated a strikingly similar pattern of social differentiation,characterized by the division of individuals into two main clusters and one small cluster.Spatially,the two primary clusters occupied the eastern and western waters,respectively,although the core distribution area of the eastern cluster shifted further eastward between the two periods.Despite this distribution shift,the temporal stability of the social structure and inter-associations within the eastern cluster remained unaffected.A subset of 16individuals observed in both periods,comprising 51.6%and 43.2%of the population in each respective period,emerged as a foundational element of the social structure and may be responsible for sustaining social structure stability,especially during the 2007–2010 period.These observations suggest that the composition of dominant individuals,an internal factor,had a more substantial influence on the formation of the social network than changes in habitat use,an external factor.Consequently,the study proposes distinct conservation measures tailored to each of the two main clusters.展开更多
In this study, the mitochondrial DNA (mtDNA) control region and the mitochondrial cytochrome b gene of stranded Indo-Pacific humpback dolphin (Sousa chinensis) samples from the Pearl River Estuary and Xiamen water...In this study, the mitochondrial DNA (mtDNA) control region and the mitochondrial cytochrome b gene of stranded Indo-Pacific humpback dolphin (Sousa chinensis) samples from the Pearl River Estuary and Xiamen waters were sequenced and analyzed. The result of mtDNA control region revealed 34 variable sites and four unique haplotypes (named as A, B, C and D) identified among the total samples from these two water areas, and the most common haplotype (A) was shared by 75% of the dolphins sampled from the two water areas. The haplotypic diversity (h) was 0.455 and the nucleodde diversity (π) was 0.0088. The phylogenetic analysis showed that the haplotype A, C, and D were closely related, but the haplotype B (unique for XM01 from Xiamen) was far from the other three. By scanning cytochrome b fragments, two haplotypes (A and B) were identified in these two water areas, and the most common haplotype (A) was shared by 91.67% individuals, while XM01 from Xiamen as the only exception. The data suggest that there is a possibility of gene exchange between the two populations in the Pearl River Estuary and Xiamen waters, and there possibly exists a unique maternal lineage in Xiamen waters.展开更多
Ecological compensation plays an important role in implementing the social responsibility of infrastructure mega-projects. Based on the results of a field study, an in-depth interview, and archive data, this paper int...Ecological compensation plays an important role in implementing the social responsibility of infrastructure mega-projects. Based on the results of a field study, an in-depth interview, and archive data, this paper introduces the ecological compensation for Sousa chinensis(the Indo-Pacific humpbacked dolphin) during the construction of the Hong Kong-Zhuhai-Macao Bridge. It studies the concrete measures, decision-making processes,and organizational collaboration of the ecological compensation, using the method of a case study. The present study not only enriches our understanding of the ecological compensation practice during the construction of infrastructure mega-projects, but also extends the literature on the social responsibility of infrastructure mega-projects.This sheds light on the protection of the environment as well as biodiversity in the construction of future infrastructure mega-projects.展开更多
基金supported by the National Natural Science Foundation of China (32030011,31630071)National Key Research and Development Program of China (2022YFF1301600)Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘As highly social animals,Indo-Pacific humpback dolphins(Sousa chinensis)exhibit community differentiation.Nevertheless,our understanding of the external and internal factors influencing these dynamics,as well as their spatiotemporal variations,is still limited.In the present study,variations in the social structure of an endangered Indo-Pacific humpback dolphin population in Xiamen Bay,China,were monitored over two distinct periods(2007–2010 and 2017–2019)to analyze the effects of habitat utilization and the composition of individuals within the population.In both periods,the population demonstrated a strikingly similar pattern of social differentiation,characterized by the division of individuals into two main clusters and one small cluster.Spatially,the two primary clusters occupied the eastern and western waters,respectively,although the core distribution area of the eastern cluster shifted further eastward between the two periods.Despite this distribution shift,the temporal stability of the social structure and inter-associations within the eastern cluster remained unaffected.A subset of 16individuals observed in both periods,comprising 51.6%and 43.2%of the population in each respective period,emerged as a foundational element of the social structure and may be responsible for sustaining social structure stability,especially during the 2007–2010 period.These observations suggest that the composition of dominant individuals,an internal factor,had a more substantial influence on the formation of the social network than changes in habitat use,an external factor.Consequently,the study proposes distinct conservation measures tailored to each of the two main clusters.
基金the National Natural Sci-ence Foundation of China (No. 30570255)
文摘In this study, the mitochondrial DNA (mtDNA) control region and the mitochondrial cytochrome b gene of stranded Indo-Pacific humpback dolphin (Sousa chinensis) samples from the Pearl River Estuary and Xiamen waters were sequenced and analyzed. The result of mtDNA control region revealed 34 variable sites and four unique haplotypes (named as A, B, C and D) identified among the total samples from these two water areas, and the most common haplotype (A) was shared by 75% of the dolphins sampled from the two water areas. The haplotypic diversity (h) was 0.455 and the nucleodde diversity (π) was 0.0088. The phylogenetic analysis showed that the haplotype A, C, and D were closely related, but the haplotype B (unique for XM01 from Xiamen) was far from the other three. By scanning cytochrome b fragments, two haplotypes (A and B) were identified in these two water areas, and the most common haplotype (A) was shared by 91.67% individuals, while XM01 from Xiamen as the only exception. The data suggest that there is a possibility of gene exchange between the two populations in the Pearl River Estuary and Xiamen waters, and there possibly exists a unique maternal lineage in Xiamen waters.
基金funded by National Natural Science Foundation of China:71390525,National Natural Science Foundation of China:71620107004Shanghai Excellent Academic Leaders Program:14XD1402200
文摘Ecological compensation plays an important role in implementing the social responsibility of infrastructure mega-projects. Based on the results of a field study, an in-depth interview, and archive data, this paper introduces the ecological compensation for Sousa chinensis(the Indo-Pacific humpbacked dolphin) during the construction of the Hong Kong-Zhuhai-Macao Bridge. It studies the concrete measures, decision-making processes,and organizational collaboration of the ecological compensation, using the method of a case study. The present study not only enriches our understanding of the ecological compensation practice during the construction of infrastructure mega-projects, but also extends the literature on the social responsibility of infrastructure mega-projects.This sheds light on the protection of the environment as well as biodiversity in the construction of future infrastructure mega-projects.