In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficul...In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficulties in dummy gate forma-tion and shadowing effects of I/I.This article systematically investigates the impact of different implantation conditions on the performance of VCTs with and without dummy gates through TCAD simulation.It reveals the significant role of the lightly doped regions(LDRs)naturally formed due to ion implantation in source/drain of VCTs.Furthermore,it was found that VCT with-out dummy gates can achieve an approximately 27%increase in on-state current(Ion)under the same implantation conditions,and can greatly simplify the process flow and reduce costs.Finally,N-type and P-type VCTs were successfully fabricated using this implantation method.展开更多
m thin-film fully-depleted SOI CMOS devices with elevated source/drain structure are fabricated by a novel technology.Key process technologies are demonstrated.The devices have quasi-ideal subthreshold properties;the ...m thin-film fully-depleted SOI CMOS devices with elevated source/drain structure are fabricated by a novel technology.Key process technologies are demonstrated.The devices have quasi-ideal subthreshold properties;the subthreshold slope of nMOSFETs is 65mV/decade,while that of pMOSFETs is 69mV/decade.The saturation current of 1.2μm nMOSFETs is increased by 32% with elevated source/drain structure,and that of 1.2μm pMOSFETs is increased by 24%.The per-stage propagation delay of 101-stage fully-depleted SOI CMOS ring oscillator is 75ps with 3V supply voltage.展开更多
Ge complementary tunneling field-effect transistors(TFETs) are fabricated with the NiGe metal source/drain(S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of suffi...Ge complementary tunneling field-effect transistors(TFETs) are fabricated with the NiGe metal source/drain(S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of sufficiently high Schottky barrier heights. As a result, the Ge p-and n-TFETs exhibit decent electrical properties of large ON-state current and steep sub-threshold slope(S factor). Especially, I_d of 0.2 μA/μm is revealed at V_g-V_(th) = V_d = ±0.5 V for Ge pTFETs,with the S factor of 28 mV/dec at 7 K.展开更多
Fin field-effect transistor(FinFET)technology has been introduced to the mainstream complementary metal-oxide semiconductor(CMOS)manufacturing for low-power and highperformance applications.However,advanced FinFET nod...Fin field-effect transistor(FinFET)technology has been introduced to the mainstream complementary metal-oxide semiconductor(CMOS)manufacturing for low-power and highperformance applications.However,advanced FinFET nodes are facing significant challenges to enhance the device performance due to the increasingly prominent parasitic resistance and capacitance.In this study,for the first time,we demonstrate methods of enhancing p-channel FinFET(pFET)performance on a fully integrated advanced FinFET platform via source/drain(S/D)cavity structure optimization.By modulating the cavity depth and proximity around the optimal reference point,we show that the trade-off between the S/D resistance and short channel effect,as well as the impact on the parasitic capacitance must be considered for the S/D cavity structure optimization.An extra process knob of applying cavity implant on the desired cavity structure was also demonstrated to modify the S/D junction profile for device performance enhancement.展开更多
In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. ...In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel ease. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2). Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (10^6) are both achieved by applying the SSDOM structure.展开更多
In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presen...In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presented while considering the effects of high-k gate-dielectric material induced fringing-field. The two-dimensional(2D) Poisson's equation is solved in a channel region in order to obtain the surface potential under the assumption of the parabolic potential profile in the transverse direction of the channel with appropriate boundary conditions. The accuracy of the model is verified by comparing the model's results with the 2D simulation results from ATLAS over a wide range of channel lengths and other parameters,including the dielectric constant of gate-dielectric material.展开更多
We investigate the influence of source and drain bias voltages(V_(DS))on the quantum sub-band transport spectrum in the 10-nm width N-typed junctionless nanowire transistor at the low temperature of 6 K.We demonstrate...We investigate the influence of source and drain bias voltages(V_(DS))on the quantum sub-band transport spectrum in the 10-nm width N-typed junctionless nanowire transistor at the low temperature of 6 K.We demonstrate that the transverse electric field introduced from V_(DS) has a minor influence on the threshold voltage of the device.The transverse electric field plays the role of amplifying the gate restriction effect of the channel.The one-dimensional(1D)-band dominated transport is demonstrated to be modulated by V_(DS) in the saturation region and the linear region,with the sub-band energy levels in the channel(E_(channel))intersecting with Fermi levels of the source(E_(fS))and the drain(E_(fD))in turn as V_(g) increases.The turning points from the linear region to the saturation region shift to higher gate voltages with V_(DS) increase because the higher Fermi energy levels of the channel required to meet the situation of E_(fD)=E_(channel).We also find that the bias electric field has the effect to accelerate the thermally activated electrons in the channel,equivalent to the effect of thermal temperature on the increase of electron energy.Our work provides a detailed description of the bias-modulated quantum electronic properties,which will give a more comprehensive understanding of transport behavior in nanoscale devices.展开更多
GaSb is an attractive candidate for future high-performance Ⅲ-Ⅴ p-channel metal-oxide-semiconductor-field-effect-transistors(pMOSFETs)because of its high hole mobility.The effect of HCl based-chemical cleaning on re...GaSb is an attractive candidate for future high-performance Ⅲ-Ⅴ p-channel metal-oxide-semiconductor-field-effect-transistors(pMOSFETs)because of its high hole mobility.The effect of HCl based-chemical cleaning on removing the non-self limiting and instable native oxide layer of GaSb to obtain a clean and smooth surface has been studied.It is observed that the rms roughness of a GaSb surface is significantly reduced from 2.731 nm to 0.693 nm by using HCl:H_(2)O(1:3)solution.The Ni/Pt/Au ohmic contact exhibits an optimal specific contact resistivity of about 6.89×10^(-7)Ω·cm^(2) with a 60 s rapid thermal anneal(RTA)at 250℃.Based on the chemical cleaning and ohmic contact experimental results,inversion-channel enhancement GaSb pMOSFETs are demonstrated.For a 6μm gate length GaSb pMOSFET,a maximum drain current of about 4.0 mA/mm,a drain current on-off(ION/IOFF)ratio of>10^(3),and a subthreshold swing of~250 mV/decade are achieved.Combined with the split C-V method,a peak hole mobility of about 160 cm^(2)/V·s is obtained for a 24μm gate length GaSb pMOSFET.展开更多
A dual silicide layer structure is proposed for Schottky barrier metal-oxide-semiconductor held effect transistors(MOSFETs)on bulk substrates.The source/drain regions are designed to be composed with dual stacked sili...A dual silicide layer structure is proposed for Schottky barrier metal-oxide-semiconductor held effect transistors(MOSFETs)on bulk substrates.The source/drain regions are designed to be composed with dual stacked silicide layers,forming different barrier heights to silicon channel.Performance comparisons between the dual barrier structure and the single barrier structure are carried out with numerical simulations.It is found that the dual barrier structure has significant advantages over the single barrier structure because the drive current and leakage current of the dual barrier structure can be modulated.Furthermore,the dual barrier structure's performance is nearly insensitive to the total silicide thickness,which can relax the fabrication requirements and even make an SOI substrate unnecessary for planar device design.The formation of ErSix/CoSi2 stacked multilayers has been proved by experiments.展开更多
The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer r...The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.展开更多
We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),org...We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.展开更多
We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ous...We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ously applying V205 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V205 layer was added between CuPc and A1 in the source-drain (S/D) area. As a result, the field- effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V.s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V205 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced.展开更多
We investigate the influence of gate-source/drain (G-S/D) misalignment on the performance of bulk fin field effect transistors (FinFETs) through the three-dimensional (3D) full band Monte Carlo simulator. Severa...We investigate the influence of gate-source/drain (G-S/D) misalignment on the performance of bulk fin field effect transistors (FinFETs) through the three-dimensional (3D) full band Monte Carlo simulator. Several scat- tering mechanisms, such as acoustic and optical phonon scattering, ionized impurity scattering, impact ionization scattering and surface roughness scattering are considered in our simulator. The influence of G-S/D overlap and underlap on the on-states performance and carrier transport of bulk FinFETs are mainly discussed in our work. Our results show that the on-states currents increase with the increment of G-D/S overlap length and the positions of a potential barrier and average electron energy maximum vary with the G-D/S overlap length. The carrier transport phenomena in bulk FinFETs are due to the effect of scattering and the electric field in the overlap/underlap regime.展开更多
Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment o...Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.展开更多
Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Na...Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.展开更多
Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information ...Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.展开更多
0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,...0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.展开更多
Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ...Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.展开更多
The effects of source-drain underlaps on the performance of a top gate silicon nanowire on insulator transistor are studied using a three dimensional(3D) self-consistent Poisson-Schrodinger quantum simulation. Voltage...The effects of source-drain underlaps on the performance of a top gate silicon nanowire on insulator transistor are studied using a three dimensional(3D) self-consistent Poisson-Schrodinger quantum simulation. Voltage-controlled tunnel barrier is the device transport physics. The off current, the on/off current ratio, and the inverse subthreshold slope are improved while the on current is degraded with underlap. The physics behind this behavior is the modulation of a tunnel barrier with underlap. The underlap primarily affects the tunneling component of drain current. About 50% contribution to the gate capacitance comes from the fringing electric fields emanating from the gate metal to the source and drain. The gate capacitance reduces with underlap, which should reduce the intrinsic switching delay and increase the intrinsic cut-off frequency. However, both the on current and the transconductance reduce with underlap, and the consequence is the increase of delay and the reduction of cut-off frequency.展开更多
文摘In vertical channel transistors(VCTs),source/drain ion implantation(I/I)represents a significant technical challenge due to inherent three-dimensional structural constraints,which induce complications such as difficulties in dummy gate forma-tion and shadowing effects of I/I.This article systematically investigates the impact of different implantation conditions on the performance of VCTs with and without dummy gates through TCAD simulation.It reveals the significant role of the lightly doped regions(LDRs)naturally formed due to ion implantation in source/drain of VCTs.Furthermore,it was found that VCT with-out dummy gates can achieve an approximately 27%increase in on-state current(Ion)under the same implantation conditions,and can greatly simplify the process flow and reduce costs.Finally,N-type and P-type VCTs were successfully fabricated using this implantation method.
文摘m thin-film fully-depleted SOI CMOS devices with elevated source/drain structure are fabricated by a novel technology.Key process technologies are demonstrated.The devices have quasi-ideal subthreshold properties;the subthreshold slope of nMOSFETs is 65mV/decade,while that of pMOSFETs is 69mV/decade.The saturation current of 1.2μm nMOSFETs is increased by 32% with elevated source/drain structure,and that of 1.2μm pMOSFETs is increased by 24%.The per-stage propagation delay of 101-stage fully-depleted SOI CMOS ring oscillator is 75ps with 3V supply voltage.
基金Supported by the National Natural Science Foundation of China under Grant No 61504120the Zhejiang Provincial Natural Science Foundation of China under Grant No LR18F040001the Fundamental Research Funds for the Central Universities
文摘Ge complementary tunneling field-effect transistors(TFETs) are fabricated with the NiGe metal source/drain(S/D) structure. The dopant segregation method is employed to form the NiGe/Ge tunneling junctions of sufficiently high Schottky barrier heights. As a result, the Ge p-and n-TFETs exhibit decent electrical properties of large ON-state current and steep sub-threshold slope(S factor). Especially, I_d of 0.2 μA/μm is revealed at V_g-V_(th) = V_d = ±0.5 V for Ge pTFETs,with the S factor of 28 mV/dec at 7 K.
文摘Fin field-effect transistor(FinFET)technology has been introduced to the mainstream complementary metal-oxide semiconductor(CMOS)manufacturing for low-power and highperformance applications.However,advanced FinFET nodes are facing significant challenges to enhance the device performance due to the increasingly prominent parasitic resistance and capacitance.In this study,for the first time,we demonstrate methods of enhancing p-channel FinFET(pFET)performance on a fully integrated advanced FinFET platform via source/drain(S/D)cavity structure optimization.By modulating the cavity depth and proximity around the optimal reference point,we show that the trade-off between the S/D resistance and short channel effect,as well as the impact on the parasitic capacitance must be considered for the S/D cavity structure optimization.An extra process knob of applying cavity implant on the desired cavity structure was also demonstrated to modify the S/D junction profile for device performance enhancement.
基金Project supported by the National Natural Science Foundation of China (Grant No 60506009).
文摘In this paper, we propose a novel Schottky barrier MOSFET structure, in which the silicide source/drain is designed on the buried metal (SSDOM). The source/drain region consists of two layers of silicide materials. Two Schottky barriers are formed between the silicide layers and the silicon channel. In the device design, the top barrier is lower and the bottom is higher. The lower top contact barrier is to provide higher on-state current, and the higher bottom contact barrier to reduce the off-state current. To achieve this, ErSi is proposed for the top silicide and CoSi2 for the bottom in the n-channel ease. The 50 nm n-channel SSDOM is thus simulated to analyse the performance of the SSDOM device. In the simulations, the top contact barrier is 0.2e V (for ErSi) and the bottom barrier is 0.6 eV (for CoSi2). Compared with the corresponding conventional Schottky barrier MOSFET structures (CSB), the high on-state current of the SSDOM is maintained, and the off-state current is efficiently reduced. Thus, the high drive ability (1.2 mA/μm at Vds = 1 V, Vgs = 2 V) and the high Ion/Imin ratio (10^6) are both achieved by applying the SSDOM structure.
基金supported by the Science and Engineering Research Board(SERB),Department of Science and Technology,Ministry of Human Resource and Development,Government of India under Young Scientist Research(Grant No.SB/FTP/ETA-415/2012)
文摘In this paper, a surface potential based threshold voltage model of fully-depleted(FD) recessed-source/drain(Re-S/D)silicon-on-insulator(SOI) metal-oxide semiconductor field-effect transistor(MOSFET) is presented while considering the effects of high-k gate-dielectric material induced fringing-field. The two-dimensional(2D) Poisson's equation is solved in a channel region in order to obtain the surface potential under the assumption of the parabolic potential profile in the transverse direction of the channel with appropriate boundary conditions. The accuracy of the model is verified by comparing the model's results with the 2D simulation results from ATLAS over a wide range of channel lengths and other parameters,including the dielectric constant of gate-dielectric material.
基金the National Key Research and Development Program of China(Grant No.2016YFA0200503).
文摘We investigate the influence of source and drain bias voltages(V_(DS))on the quantum sub-band transport spectrum in the 10-nm width N-typed junctionless nanowire transistor at the low temperature of 6 K.We demonstrate that the transverse electric field introduced from V_(DS) has a minor influence on the threshold voltage of the device.The transverse electric field plays the role of amplifying the gate restriction effect of the channel.The one-dimensional(1D)-band dominated transport is demonstrated to be modulated by V_(DS) in the saturation region and the linear region,with the sub-band energy levels in the channel(E_(channel))intersecting with Fermi levels of the source(E_(fS))and the drain(E_(fD))in turn as V_(g) increases.The turning points from the linear region to the saturation region shift to higher gate voltages with V_(DS) increase because the higher Fermi energy levels of the channel required to meet the situation of E_(fD)=E_(channel).We also find that the bias electric field has the effect to accelerate the thermally activated electrons in the channel,equivalent to the effect of thermal temperature on the increase of electron energy.Our work provides a detailed description of the bias-modulated quantum electronic properties,which will give a more comprehensive understanding of transport behavior in nanoscale devices.
基金Supported by the National Basic Research Program of China under Grant Nos 2011CBA00605,2010CB327501the National Natural Science Foundation of China under Grant No 61106095+1 种基金the National Science&Technology Major Project of China under Grant No 2011ZX02708-003One Hundred Talents Program of Chinese Academy of Sciences,and the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education of China.
文摘GaSb is an attractive candidate for future high-performance Ⅲ-Ⅴ p-channel metal-oxide-semiconductor-field-effect-transistors(pMOSFETs)because of its high hole mobility.The effect of HCl based-chemical cleaning on removing the non-self limiting and instable native oxide layer of GaSb to obtain a clean and smooth surface has been studied.It is observed that the rms roughness of a GaSb surface is significantly reduced from 2.731 nm to 0.693 nm by using HCl:H_(2)O(1:3)solution.The Ni/Pt/Au ohmic contact exhibits an optimal specific contact resistivity of about 6.89×10^(-7)Ω·cm^(2) with a 60 s rapid thermal anneal(RTA)at 250℃.Based on the chemical cleaning and ohmic contact experimental results,inversion-channel enhancement GaSb pMOSFETs are demonstrated.For a 6μm gate length GaSb pMOSFET,a maximum drain current of about 4.0 mA/mm,a drain current on-off(ION/IOFF)ratio of>10^(3),and a subthreshold swing of~250 mV/decade are achieved.Combined with the split C-V method,a peak hole mobility of about 160 cm^(2)/V·s is obtained for a 24μm gate length GaSb pMOSFET.
基金Supported by the National Natural Science Foundation of China(No.61474005)the Beijing Natural Science Foundation(No.4182025)。
文摘A dual silicide layer structure is proposed for Schottky barrier metal-oxide-semiconductor held effect transistors(MOSFETs)on bulk substrates.The source/drain regions are designed to be composed with dual stacked silicide layers,forming different barrier heights to silicon channel.Performance comparisons between the dual barrier structure and the single barrier structure are carried out with numerical simulations.It is found that the dual barrier structure has significant advantages over the single barrier structure because the drive current and leakage current of the dual barrier structure can be modulated.Furthermore,the dual barrier structure's performance is nearly insensitive to the total silicide thickness,which can relax the fabrication requirements and even make an SOI substrate unnecessary for planar device design.The formation of ErSix/CoSi2 stacked multilayers has been proved by experiments.
基金supported by the National Natural Science Foundation of China(Grant No.42130312)。
文摘The complexity of the seismicity pattern for the subduction zone along the oceanic plate triggered the outer rise events and revealed cyclic tectonic deformation conditions along the plate subduction zones.The outer rise earthquakes have been observed along the Sunda arc,following the estimated rupture area of the 2005 M_(W)8.6 Nias earthquakes.Here,we used kinematic waveform inversion(KIWI)to obtain the source parameters of the 14 May 2021 M_(W)6.6 event off the west coast of northern Sumatra and to define the fault plane that triggered this outer rise event.The KIWI algorithm allows two types of seismic source to be configured:the moment tensor model to describe the type of shear with six moment tensor components and the Eikonal model for the rupture of pure double-couple sources.This method was chosen for its flexibility to be applied for different sources of seismicity and also for the automated full-moment tensor solution with real-time monitoring.We used full waveform traces from 8 broadband seismic stations within 1000 km epicentral distances sourced from the Incorporated Research Institutions for Seismology(IRIS-IDA)and Geofon GFZ seismic record databases.The initial origin time and hypocenter values are obtained from the IRIS-IDA.The synthetic seismograms used in the inversion process are based on the existing regional green function database model and were accessed from the KIWI Tools Green's Function Database.The obtained scalar seismic moment value is 1.18×10^(19)N·m,equivalent to a moment magnitude M_(W)6.6.The source parameters are 140°,44°,and−99°for the strike,dip,and rake values at a centroid depth of 10.2 km,indicating that this event is a normal fault earthquake that occurred in the outer rise area.The outer rise events with normal faults typically occur at the shallow part of the plate,with nodal-plane dips predominantly in the range of 30°-60°on the weak oceanic lithosphere due to hydrothermal alteration.The stress regime around the plate subduction zone varies both temporally and spatially due to the cyclic influences of megathrust earthquakes.Tensional outer rise earthquakes tend to occur after the megathrust events.The relative timing of these events is not known due to the viscous relaxation of the down going slab and poroelastic response in the trench slope region.The occurrence of the 14 May 2021 earthquake shows the seismicity in the outer rise region in the strongly coupled Sunda arc subduction zone due to elastic bending stress within the duration of the seismic cycle.
基金support from the Natural Science Foundation of Jiangsu Province(Grant No.BK20240036)the National Natural Science Foundation of China(Grant Nos.U24A20515,22276099,and 22361162668)Guangxi Key Research and Development Program,China(Grant No.Guike AB24010074)。
文摘We conducted a field campaign to investigate the chemical composition,sources,and light absorption of submicron aerosols(PM_(1))from early 2022 in Nanjing,China.The average concentration of PM_(1) was 31μg m^(−3),organics(33%)constituted the largest fraction,followed by nitrate(30%),sulfate(18%),ammonium(15%),chloride(3%),and rBC(2%).Four organic aerosol(OA)subcomponents were identified,including two primary OA(POA)and two secondary OA(SOA).The less-oxidized SOA(LO-OOA)contributes the most to the total OA mass(59%).LO-OOA is tightly correlated with the tracer ion C_(2)H_(4)O_(2)^(+)from levoglucosan,and another aged biomass-burning derived species,K_(3)SO_(4)^(+),suggesting it was likely influenced by aged biomass-burning OA.Our study also revealed that fireworks during the Spring Festival have a detrimental impact on air quality,contributing to secondary formation and accumulation under static winter meteorological conditions,prolonging the pollution duration.Also,LO-OOA was found to have the strongest light-absorbing ability.Our results highlight that the light absorption of LO-OOA can mainly be attributed to the C_(x)H_(y)N^(+) family,increased with the double-bond equivalent value.The more-oxidized SOA(MO-OOA)exhibited a negligible light absorption and was strongly correlated with daytime photochemical processes,implying a light-bleaching effect.This study enhances our understanding of the regional contribution of biomass combustion and fireworks to PM_(1) pollution in Nanjing,a typical megacity in the Yangtze River Delta region,during winter,aiding in the development of strategies for long-term air quality improvement in the region.
基金Project supported by the National Natural Science Foundation of China(No.60676051)the National High Technology Research and Development Program of China(No.2013A A014201)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission(No.2011ZD02)the Key Science and Technology Support Program of Tianjin(No.14ZCZDGX00006)the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin
文摘We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultane- ously applying V205 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V205 layer was added between CuPc and A1 in the source-drain (S/D) area. As a result, the field- effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V.s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V205 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced.
基金Project supported by the National Fundamental Basic Research Program of China(No.2011CBA00604)
文摘We investigate the influence of gate-source/drain (G-S/D) misalignment on the performance of bulk fin field effect transistors (FinFETs) through the three-dimensional (3D) full band Monte Carlo simulator. Several scat- tering mechanisms, such as acoustic and optical phonon scattering, ionized impurity scattering, impact ionization scattering and surface roughness scattering are considered in our simulator. The influence of G-S/D overlap and underlap on the on-states performance and carrier transport of bulk FinFETs are mainly discussed in our work. Our results show that the on-states currents increase with the increment of G-D/S overlap length and the positions of a potential barrier and average electron energy maximum vary with the G-D/S overlap length. The carrier transport phenomena in bulk FinFETs are due to the effect of scattering and the electric field in the overlap/underlap regime.
基金supported by the Ministry of Science and Technology of China(Nos.2021YFC3200904 and 2022YFC3203705)the National Natural Science Foundation of China(Nos.52270012 and 52070184).
文摘Phthalate esters(PAEs),recognized as endocrine disruptors,are released into the environment during usage,thereby exerting adverse ecological effects.This study investigates the occurrence,sources,and risk assessment of PAEs in surface water obtained from 36 sampling points within the Yellow River and Yangtze River basins.The total concentration of PAEs in the Yellow River spans from124.5 to 836.5 ng/L,with Dimethyl phthalate(DMP)(75.4±102.7 ng/L)and Diisobutyl phthalate(DiBP)(263.4±103.1 ng/L)emerging as the predominant types.Concentrations exhibit a pattern of upstream(512.9±202.1 ng/L)>midstream(344.5±135.3 ng/L)>downstream(177.8±46.7 ng/L).In the Yangtze River,the total concentration ranges from 81.9 to 441.6 ng/L,with DMP(46.1±23.4 ng/L),Diethyl phthalate(DEP)(93.3±45.2 ng/L),and DiBP(174.2±67.6 ng/L)as the primary components.Concentration levels follow a midstream(324.8±107.3 ng/L)>upstream(200.8±51.8 ng/L)>downstream(165.8±71.6 ng/L)pattern.Attention should be directed towards the moderate ecological risks of DiBP in the upstream of HH,and both the upstream and midstream of CJ need consideration for the moderate ecological risks associated with Di-n-octyl phthalate(DNOP).Conversely,in other regions,the associated risk with PAEs is either low or negligible.The main source of PAEs in Yellow River is attributed to the release of construction land,while in the Yangtze River Basin,it stems from the accumulation of pollutants in lakes and forests discharged into the river.These findings are instrumental for pinpointing sources of PAEs pollution and formulating control strategies in the Yellow and Yangtze Rivers,providing valuable insights for global PAEs research in other major rivers.
文摘Collagen is a class of mammalian extracellular matrix of the main structural proteins,widely present in the skin,bone,muscle and other tissues and it plays a role in supporting,repairing,and protecting tissue cells.Natural source extraction and artificial synthesis provide a rich source of collagen.As a macromolecular material,collagen has good application potential in cosmetics,pharmaceutical,medical and food industries.Collagen has generated a great deal of interest in the cosmetic industry due to its abundance,strength,and direct correlation with skin aging.Collagen is widely used in cosmetics due to its unique structure,good biocompatibility and low antigenicity,as well as rich biological functions.To enhance the youthfulness and health of the user,the cosmetic industry adds collagen to products such as eye creams,face creams,and nutritional supplements,and uses it in medical aesthetic techniques such as tissue fillers,skin replacement,and soft skin enhancement.This paper mainly reviews the sources and types of collagen used in cosmetics industry,then introduces the effects of collagen in cosmetics and prospects the development prospects of collagen in dermatologic and cosmetic fields.
基金supported in part by the National Key Research and Development Program of China under Grant No.2024YFE0200600the Zhejiang Provincial Natural Science Foundation of China under Grant No.LR23F010005the Huawei Cooperation Project under Grant No.TC20240829036。
文摘Along with the proliferating research interest in semantic communication(Sem Com),joint source channel coding(JSCC)has dominated the attention due to the widely assumed existence in efficiently delivering information semantics.Nevertheless,this paper challenges the conventional JSCC paradigm and advocates for adopting separate source channel coding(SSCC)to enjoy a more underlying degree of freedom for optimization.We demonstrate that SSCC,after leveraging the strengths of the Large Language Model(LLM)for source coding and Error Correction Code Transformer(ECCT)complemented for channel coding,offers superior performance over JSCC.Our proposed framework also effectively highlights the compatibility challenges between Sem Com approaches and digital communication systems,particularly concerning the resource costs associated with the transmission of high-precision floating point numbers.Through comprehensive evaluations,we establish that assisted by LLM-based compression and ECCT-enhanced error correction,SSCC remains a viable and effective solution for modern communication systems.In other words,separate source channel coding is still what we need.
基金funded by the National Key R&D Program of China(No.2020YFC150071)partly supported by the Shaanxi Province Geoscience Big Data and Geohazard Prevention Innovation Team(2022)and the Research Funds for the Interdisciplinary Projects,CHU(No.300104240914)。
文摘0 INTRODUCTION.According to the China Earthquake Networks Center,an M6.8 earthquake struck Dingri County,Xizang Autonomous Region,China,on 7 January 2025 at 9:05 a.m.local time.The epicenter is located at 28.5°N,87.45°E,with a depth of~10 km.
基金supported by Hong Kong Environment Protection Department(Quotation Ref.18-06532)Hong Kong Innovation and Technology Fund(ITS/193/20FP)Hong Kong Research Grants Council(No.26304921).
文摘Initial success has been achieved in Hong Kong in controlling primary air pollutants,but ambient ozone levels kept increasing during the past three decades.Volatile organic compounds(VOCs)are important for mitigating ozone pollution as its major precursors.This study analyzed VOC characteristics of roadside,suburban,and rural sites in Hong Kong to investigate their compositions,concentrations,and source contributions.Herewe showthat the TVOC concentrations were 23.05±13.24,12.68±15.36,and 5.16±5.48 ppbv for roadside,suburban,and rural sites between May 2015 to June 2019,respectively.By using Positive Matrix Factorization(PMF)model,six sources were identified at the roadside site over five years:Liquefied petroleum gas(LPG)usage(33%–46%),gasoline evaporation(8%–31%),aged air mass(11%–28%),gasoline exhaust(5%–16%),diesel exhaust(2%–16%)and fuel filling(75–9%).Similarly,six sources were distinguished at the suburban site,including LPG usage(30%–33%),solvent usage(20%–26%),diesel exhaust(14%–26%),gasoline evaporation(8%–16%),aged air mass(4%–11%),and biogenic emissions(2%–5%).At the rural site,four sources were identified,including aged airmass(33%–51%),solvent usage(25%–30%),vehicular emissions(11%–28%),and biogenic emissions(6%–12%).The analysis further revealed that fuel filling and LPG usage were the primary contributors to OFP and OH reactivity at the roadside site,while solvent usage and biogenic emissions accounted for almost half of OFP and OH reactivity at the suburban and rural sites,respectively.These findings highlight the importance of identifying and characterizing VOC sources at different sites to help policymakers develop targeted measures for pollution mitigation in specific areas.
文摘The effects of source-drain underlaps on the performance of a top gate silicon nanowire on insulator transistor are studied using a three dimensional(3D) self-consistent Poisson-Schrodinger quantum simulation. Voltage-controlled tunnel barrier is the device transport physics. The off current, the on/off current ratio, and the inverse subthreshold slope are improved while the on current is degraded with underlap. The physics behind this behavior is the modulation of a tunnel barrier with underlap. The underlap primarily affects the tunneling component of drain current. About 50% contribution to the gate capacitance comes from the fringing electric fields emanating from the gate metal to the source and drain. The gate capacitance reduces with underlap, which should reduce the intrinsic switching delay and increase the intrinsic cut-off frequency. However, both the on current and the transconductance reduce with underlap, and the consequence is the increase of delay and the reduction of cut-off frequency.