Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po...Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.展开更多
In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a m...In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.展开更多
To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace t...To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).展开更多
Jet agitation is known as a maintenance-free stirring technique for nuclear wastewater treatment and demonstrates great potential in transport of radioactive particles.Removal processes of horizontal sediment beds dri...Jet agitation is known as a maintenance-free stirring technique for nuclear wastewater treatment and demonstrates great potential in transport of radioactive particles.Removal processes of horizontal sediment beds driven by impinging jets were experimentally investigated using image capture and processing technique.The beds were composed of heavy fine particles with particle density ranging from 3700 to 12600 kg·m^(-3) and particle diameter from 5 to 100 μm.The jet Reynolds number varied between 4300 and 9600.The single-phase large eddy simulation method was used for calculating both jet flow characteristics and wall shear stresses.The effects of jet strength,particle density,particle diameter,and bed thickness on bed mobility in terms of the critical Shields numbers were considered.Specifically,the critical Shields number was found to be intricately related to properties of particles,and independent of jet intensity.A new Shields number curve for stainless-steel particles was found,and a model was proposed to predict the transport rate of thin beds,with R^(2)=0.96.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures...Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.展开更多
Particle motion in confined shear flow of viscoelastic fluids is very common in nature and has a wide range of applications.Understanding and mastering the motion characteristics of particles in viscoelastic fluids ha...Particle motion in confined shear flow of viscoelastic fluids is very common in nature and has a wide range of applications.Understanding and mastering the motion characteristics of particles in viscoelastic fluids has important academic value and practical significance.In this paper,we first introduce the related equations and characteristic parameter,and then emphasize the following issues:the lateral equilibrium position of particle;interaction and aggregation of multiple particles;the chain structure formed by multiple particles;and the motion of non-spherical particle.Finally,some unresolved issues,challenges,and future research directions are highlighted.展开更多
It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simul...It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.展开更多
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to...Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.展开更多
A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior ...A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.展开更多
Flher-like particle suspensions are common in both na-ture and industry, but there is little work reported on it.The forces acting on the fiber - like particle in fluid arestudied in this paper, and the Magnus lift, S...Flher-like particle suspensions are common in both na-ture and industry, but there is little work reported on it.The forces acting on the fiber - like particle in fluid arestudied in this paper, and the Magnus lift, Saffman lift,pressure gradient force, and then the dynamics modelhave been received. The numerical study of the simpleshear flow past the cylinders shows that the particles ’motion is controlled by the vortex.展开更多
Based on the solubility in supercritical CO2,two strategies in which CO2 plays different roles are used to make quercetine and astaxanthin particles by supercritical fluid technologies.The experimental results showed ...Based on the solubility in supercritical CO2,two strategies in which CO2 plays different roles are used to make quercetine and astaxanthin particles by supercritical fluid technologies.The experimental results showed that micronized quercetine particles with mean particle size of 1.0-1.5 μm can be made via solution enhanced dispersion by supercritical fluids(SEDS) process,in which CO2 worked as turbulent anti-solvent;while for astaxanthin,micronized particles with mean particle size of 0.3-0.8 μm were also made successfully by rapid expansion supercritical solution(RESS) process.展开更多
In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The valid...In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods.展开更多
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b...It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.展开更多
Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.Th...Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented.展开更多
Fiber-like particle suspensions are common in both nature and industry, yet research on them is still in its infancy. This paper focuses on the theoretical analysis of the heat-swimming force operating on the fiber-li...Fiber-like particle suspensions are common in both nature and industry, yet research on them is still in its infancy. This paper focuses on the theoretical analysis of the heat-swimming force operating on the fiber-like particle in nonconformity temperature fluid, and the approximate calculating formula has been proposed. It is indicated that the heat- swimming force on the fiber-like particle is in direct proportion to thetemperature gradient of fluid, but it has opposite direction and that it is restrained by the particle volume, the fluid viscosity and density rather than by the particle density.展开更多
The formation of self-organizing single-line particle train in a channel flow of a power-law fluid is studied using the lattice Boltzmann method with power-law index 0.6≤n≤1.2,particle volume concentration 0.8%≤Φ...The formation of self-organizing single-line particle train in a channel flow of a power-law fluid is studied using the lattice Boltzmann method with power-law index 0.6≤n≤1.2,particle volume concentration 0.8%≤Φ≤6.4%,Reynolds number 10≤Re≤100,and blockage ratio 0.2≤k≤0.4.The numerical method is validated by comparing the present results with the previous ones.The effect n,Φ,Re and k on the interparticle spacing and parallelism of particle train is discussed.The results showed that the randomly distributed particles would migrate towards the vicinity of the equilibrium position and form the ordered particle train in the power-law fluid.The equilibrium position of particles is closer to the channel centerline in the shear-thickening fluid than that in the Newtonian fluid and shear-thinning fluid.The particles are not perfectly parallel in the equilibrium position,hence IH is used to describe the inclination of the line linking the equilibrium position of each particle.When self-organizing single-line particle train is formed,the particle train has a better parallelism and hence benefit for particle focusing in the shearthickening fluid at highΦ,low Re and small k.Meanwhile,the interparticle spacing is the largest and hence benefit for particle separation in the shear-thinning fluid at lowΦ,low Re and small k.展开更多
The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms wa...The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms was proposed,and the solid bridge force between iron oxide particles was quantificationally analyzed.Moreover,the solid bridge force was successfully added into a CFD–DEM(computational fluid dynamics–discrete element method)model combined with heat transfer and mass transport to investigate the detailed information of agglomeration in a fluidized bed,including the spatial distribution of temperature,velocity and metallization of iron oxide particles.The region of defluidization is sensitive to the reduction temperature.At the same reduction temperature,the iron oxide powder will perform higher metallization and stable fluidization properties with molar fraction of H_(2)in the range of 0.6–0.8,when iron oxide is reduced by CO/H_(2)mixture.展开更多
In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible break...In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible breakdown of such solutions at critical time in terms of both the L^∞ (0, T; L^6)-norm of the density of particles and the ^L1(0, T; L^∞)-norm of the deformation tensor of velocity gradient.展开更多
1 INTRODUCTIONA supercritical fluid is one existing at temperatures and pressures above its criticalpoint values(T_c,p_c) [1].Supercritical fluid has unconventional thermophysical prop-erties,exhibiting higher density...1 INTRODUCTIONA supercritical fluid is one existing at temperatures and pressures above its criticalpoint values(T_c,p_c) [1].Supercritical fluid has unconventional thermophysical prop-erties,exhibiting higher density,greater compressibility,lower viscosity between the gasand liquid extremes.Its solute binary diffusion coefficient is considerably higher thanthat in liquids[2-4].Supercritical fluid extraction(SFE)has been suggested as a viablealternative to other separation technologies.展开更多
文摘Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters.
文摘In the present study,we concentrate on finding the dual solutions of biomagnetic fluid namely blood flow and heat transfer along with magnetic particles over a two dimensional shrinking cylinder in the presence of a magnetic dipole.To make the results physically realistic,stability analysis is also carried out in this study so that we realized which solution is stable and which is not.The governing partial equations are converted into ordinary differential equations by using similarity transformations and the numerical solution is calculated by applying bvp4c function technique in MATLAB software.The effects of different physical parameters are plotted graphically and discussed according to the outcomes of results.From the present study we observe that ferromagnetic interaction parameter had a great influenced on fluid velocity and temperature distributions.It is also found from the current analysis that the first and second solutions of shrinking cylinder obtained only when we applied particular ranges values of suction parameter.The most important characteristics part of study is to analyze the skin friction coefficient and rate of heat transfer which also covered in this analysis.It reveals that both skin friction coefficient and rate of heat transfer are reduced with rising values of ferromagnetic number.A comparison has also been made to make the solution feasible.
基金Project (51108062) supported by the National Natural Science Foundation of ChinaProject(20100471446) supported by the China Postdoctoral Science Foundation
文摘To improve the magneto-rheological (MR) properties of magneto-rheological fluids, self-made amorphous alloy particles, the composition of which was Fe76Cr2Mo2Sn2P10B2C2Si4, were used as the disperse phase to replace traditional carbonyl iron (CI) particles to prepare amorphous based magneto-rheological fluid (AMRF). Soft magnetic properties and densities of the amorphous particles and the CI particles were tested and compared. The results indicate the amorphous particles present a lower density but larger magnetization intensity and larger permeability at lower field levels. Properties of the AMRF with 20% particles in volume fraction were tested and compared with the CI based MR fluid (CMRF). The AMRF presents a saturation yield stress of 41 kPa at ~227 kA/m and a sedimentation ratio of 80%. The results indicate the magneto-rheological fluid based on amorphous micro-particles has better MR properties and sedimentation stability than that based on CI particles at lower field levels (0-200 kA/m).
文摘Jet agitation is known as a maintenance-free stirring technique for nuclear wastewater treatment and demonstrates great potential in transport of radioactive particles.Removal processes of horizontal sediment beds driven by impinging jets were experimentally investigated using image capture and processing technique.The beds were composed of heavy fine particles with particle density ranging from 3700 to 12600 kg·m^(-3) and particle diameter from 5 to 100 μm.The jet Reynolds number varied between 4300 and 9600.The single-phase large eddy simulation method was used for calculating both jet flow characteristics and wall shear stresses.The effects of jet strength,particle density,particle diameter,and bed thickness on bed mobility in terms of the critical Shields numbers were considered.Specifically,the critical Shields number was found to be intricately related to properties of particles,and independent of jet intensity.A new Shields number curve for stainless-steel particles was found,and a model was proposed to predict the transport rate of thin beds,with R^(2)=0.96.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
文摘Fe3O4 ferrofluids containing monodisperse Fe3O4 nanoparticles with different diameters of 8, 12, 16 and 18nm are prepared by using high-temperature solution phase reaction. The particles have single crystal structures with narrow size distributions. At room temperature, the 8-nm ferrofluid shows superparamagnetic behaviour, whereas the others display hysteresis properties and the coercivity increases with the increasing particle size. The spin glass-like behaviour and cusps near 190K are observed on all ferrofluids according to the temperature variation of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements. The cusps are found to be associated with the freezing point of the solvent. As a comparison, the ferrofluids are dried and the FC and ZFC magnetization curves of powdery samples are also investigated. It is found that the blocking temperatures for the powdery samples are higher than those for their corresponding ferrofluids. Moreover, the size dependent heating effect of the ferrofluids is also investigated in ac magnetic field with a frequency of 55 kHz and amplitude of 200 Oe.
基金supported by the National Natural Science Foundation of China(Grant No.11632016).
文摘Particle motion in confined shear flow of viscoelastic fluids is very common in nature and has a wide range of applications.Understanding and mastering the motion characteristics of particles in viscoelastic fluids has important academic value and practical significance.In this paper,we first introduce the related equations and characteristic parameter,and then emphasize the following issues:the lateral equilibrium position of particle;interaction and aggregation of multiple particles;the chain structure formed by multiple particles;and the motion of non-spherical particle.Finally,some unresolved issues,challenges,and future research directions are highlighted.
基金This work was supported by the National Natural Science Foundation of China (No.20774036) and the Fok Ying Tung Education Foundation (No.114018).
文摘It was investigated that the domain growth processes of spinodal decomposition with different quenching depth in two and three dimensional binary immiscible fluids by using parallel dissipative particle dynamics simulations. In two dimensions, the dynamic scaling exponent 1/2 for coalescence and 2/3 for inertial regimes in the shallow quench and strong finite size effects in the cases of deep quenching were obtained. In three dimensions, it was used that the diffusive regime with exponent n=l/3 in the shallow quench and the inertial hydrodynamic regime with n=2/3 for different quenches. The viscous effects are not clearly reflected, showing n=1/2 in both shallow and deep quenches in this time period, due to the soft nature of interaction potential adopted in dissipative particle dynamics.
基金the National Natural Science Foundation of China(No.52271316)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030262).
文摘Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships.
基金support by the National Basic Research Program (Grant No. 2010CB226906,and 2012CB215000)
文摘A three-dimensional model for gas-solid flow in a circulating fluidized bed(CFB) riser was developed based on computational particle fluid dynamics(CPFD).The model was used to simulate the gas-solid flow behavior inside a circulating fluidized bed riser operating at various superficial gas velocities and solids mass fluxes in two fluidization regimes,a dilute phase transport(DPT) regime and a fast fluidization(FF) regime.The simulation results were evaluated based on comparison with experimental data of solids velocity and holdup,obtained from non-invasive automated radioactive particle tracking and gamma-ray tomography techniques,respectively.The agreement of the predicted solids velocity and holdup with experimental data validated the CPFD model for the CFB riser.The model predicted the main features of the gas-solid flows in the two regimes;the uniform dilute phase in the DPT regime,and the coexistence of the dilute phase in the upper region and the dense phase in the lower region in the FF regime.The clustering and solids back mixing in the FF regime were stronger than those in the DPT regime.
基金Supported by the financial of the Natural Science Fund for outatending youth of China and the fund fo the state key laboratory of fluid transreiasion and control of Zhejiand University
文摘Flher-like particle suspensions are common in both na-ture and industry, but there is little work reported on it.The forces acting on the fiber - like particle in fluid arestudied in this paper, and the Magnus lift, Saffman lift,pressure gradient force, and then the dynamics modelhave been received. The numerical study of the simpleshear flow past the cylinders shows that the particles ’motion is controlled by the vortex.
基金Supported partially by the China Ministry of Science and Technology for the China’s Agenda 21 Strategic Research (MOST,2008IM021900)the General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China for the 4th Food Safety Research (AQSIQ 2008:ASPAQ0809)
文摘Based on the solubility in supercritical CO2,two strategies in which CO2 plays different roles are used to make quercetine and astaxanthin particles by supercritical fluid technologies.The experimental results showed that micronized quercetine particles with mean particle size of 1.0-1.5 μm can be made via solution enhanced dispersion by supercritical fluids(SEDS) process,in which CO2 worked as turbulent anti-solvent;while for astaxanthin,micronized particles with mean particle size of 0.3-0.8 μm were also made successfully by rapid expansion supercritical solution(RESS) process.
基金support of the National Natural Science Foundation of China (Grants 11501495, 51541912, 51409227)the Natural Science Foundation of Jiangsu Province, China (Grants BK20130436, BK20150436)+1 种基金the Postdoctoral Science Foundation of China (Grants 2014M550310, 2015M581869, 2015T80589)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (Grant 15KJB110025)
文摘In this paper, a corrected particle method based on the smoothed particle hydrodynamics (SPH) method with high-order Taylor expansion (CSPH-HT) for solving the viscoelastic flow is proposed and investigated. The validity and merits of the CSPH-HT method are first tested by solving the nonlinear high order Kuramoto-Sivishinsky equation and simulating the drop stretching, respectively. Then the flow behaviors behind two stationary tangential cylinders of polymer melt, which have been received little attention, are investigated by the CSPH-HT method. Finally, the CSPH-HT method is extended to the simulation of the filling process of the viscoelastic fluid. The numerical results show that the CSPH-HT method possesses higher accuracy and stability than other corrected SPH methods and is more reliable than other corrected SPH methods.
基金supported by the Key Research and Development Plan of Shandong Province(the Major Scientific and Technological Innovation Projects,2021ZDSYS13)the Natural Science Foundation of Shandong Province(ZR2021MB135)Natural Science Foundation of Shandong Province(ZR2021ME224).
文摘It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer.
基金supported by the National Natural Science Foundation of China(2187831821808234)+5 种基金the Dalian National Laboratory for Clean Energy Cooperation Fund,CAS(DNL201902)“Transformational Technologies for Clean Energy and Demonstration”,Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDA21060400)Qingdao Institute of Bioenergy and Bioprocess Technology(QIBEBT)and Dalian National Laboratory for Clean Energy(DNL)of CAS(QIBEBT ZZBS201803QIBEBT I201907)Director Innovation Fund of Synthetic Biology Technology Innovation Center of Shandong Province(sdsynbio-2020-ZH02)Project of CNPC-DICP Joint Research Center。
文摘Slurry reactors are popular in many industrial processes,involved with numerous chemical and biological mixtures,solid particles with different concentrations and properties,and a wide range of operating conditions.These factors can significantly affect the hydrodynamic in the slurry reactors,having remarkable effects on the design,scale-up,and operation of the slurry reactors.This article reviews the influences of fluid physical properties,solid particles,and operating conditions on the hydrodynamics in slurry reactors.Firstly,the influence of fluid properties,including the density and viscosity of the individual liquid and gas phases and the interfacial tension,has been reviewed.Secondly,the solid particle properties(i.e.,concentration,density,size,wettability,and shape)on the hydrodynamics have been discussed in detail,and some vital but often ignored features,especially the influences of particle wettability and shape,as well as the variation of surface tension because of solid concentration alteration,are highlighted in this work.Thirdly,the variations of physical properties of fluids,hydrodynamics,and bubble behavior resulted from the temperature and pressure variations are also summarized,and the indirect influences of pressure on viscosity and surface tension are addressed systematically.Finally,conclusions and perspectives of these notable influences on the design and scale-up of industrial slurry reactors are presented.
基金Supported by the Natural Science Toundation for outstanding youth of China and the State Key Laboratory of Fluid Transmission and Control of Zhejiang University
文摘Fiber-like particle suspensions are common in both nature and industry, yet research on them is still in its infancy. This paper focuses on the theoretical analysis of the heat-swimming force operating on the fiber-like particle in nonconformity temperature fluid, and the approximate calculating formula has been proposed. It is indicated that the heat- swimming force on the fiber-like particle is in direct proportion to thetemperature gradient of fluid, but it has opposite direction and that it is restrained by the particle volume, the fluid viscosity and density rather than by the particle density.
基金supported by the National Natural Science Foundation of China(91852102,11632016)。
文摘The formation of self-organizing single-line particle train in a channel flow of a power-law fluid is studied using the lattice Boltzmann method with power-law index 0.6≤n≤1.2,particle volume concentration 0.8%≤Φ≤6.4%,Reynolds number 10≤Re≤100,and blockage ratio 0.2≤k≤0.4.The numerical method is validated by comparing the present results with the previous ones.The effect n,Φ,Re and k on the interparticle spacing and parallelism of particle train is discussed.The results showed that the randomly distributed particles would migrate towards the vicinity of the equilibrium position and form the ordered particle train in the power-law fluid.The equilibrium position of particles is closer to the channel centerline in the shear-thickening fluid than that in the Newtonian fluid and shear-thinning fluid.The particles are not perfectly parallel in the equilibrium position,hence IH is used to describe the inclination of the line linking the equilibrium position of each particle.When self-organizing single-line particle train is formed,the particle train has a better parallelism and hence benefit for particle focusing in the shearthickening fluid at highΦ,low Re and small k.Meanwhile,the interparticle spacing is the largest and hence benefit for particle separation in the shear-thinning fluid at lowΦ,low Re and small k.
基金the National Natural Science Foundation Project of China(51374263 and 51974046).
文摘The agglomeration behavior of particles significantly impacts on the defluidization occurring in a fluidized bed during the direct reduction process.The influence of CO/H_(2)ratio on surface diffusion of iron atoms was proposed,and the solid bridge force between iron oxide particles was quantificationally analyzed.Moreover,the solid bridge force was successfully added into a CFD–DEM(computational fluid dynamics–discrete element method)model combined with heat transfer and mass transport to investigate the detailed information of agglomeration in a fluidized bed,including the spatial distribution of temperature,velocity and metallization of iron oxide particles.The region of defluidization is sensitive to the reduction temperature.At the same reduction temperature,the iron oxide powder will perform higher metallization and stable fluidization properties with molar fraction of H_(2)in the range of 0.6–0.8,when iron oxide is reduced by CO/H_(2)mixture.
基金supported by the National Basic Research Program of China(973 Program)(2011CB808002)the National Natural Science Foundation of China(11371152,11128102,11071086,and 11571117)+3 种基金the Natural Science Foundation of Guangdong Province(S2012010010408)the Foundation for Distinguished Young Talents in Higher Education of Guangdong(2015KQNCX095)the Major Foundation of Hanshan Normal University(LZ201403)the Scientific Research Foundation of Graduate School of South China Normal University(2014ssxm04)
文摘In this article, we consider the blowup criterion for the local strong solution to the compressible fluid-particle interaction model in dimension three with vacuum. We establish a BKM type criterion for possible breakdown of such solutions at critical time in terms of both the L^∞ (0, T; L^6)-norm of the density of particles and the ^L1(0, T; L^∞)-norm of the deformation tensor of velocity gradient.
文摘1 INTRODUCTIONA supercritical fluid is one existing at temperatures and pressures above its criticalpoint values(T_c,p_c) [1].Supercritical fluid has unconventional thermophysical prop-erties,exhibiting higher density,greater compressibility,lower viscosity between the gasand liquid extremes.Its solute binary diffusion coefficient is considerably higher thanthat in liquids[2-4].Supercritical fluid extraction(SFE)has been suggested as a viablealternative to other separation technologies.