Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is...Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive,but position relationship cannot fully represent the correlation changes.aimed at this drawback,the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm,firstly the position score of the returned results is standardized processing,and the similarity retrieval word string with the query results is combined into the algorithm,the similarity calculation method is also improved,through the experiment,the improved algorithm is superior to traditional sorting algorithm.展开更多
This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The ...This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The algorithm completes sorting a sequence of n elements in a calculation time of O(n ).展开更多
By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting ...By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data.展开更多
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ...This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.展开更多
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-...With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish...This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.展开更多
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa...The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.展开更多
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol...Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.展开更多
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ...The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.展开更多
Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on ...Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on account of the insufficiency of this algorithm in path optimization,this paper uses adjacency list and circular linked list with combination to store date,and through the improved quick sorting algorithm for weight sorting, accomplish a quick search to the adjacent node,and so an improved Dijkstra algorithm is got.Then apply it to the optimal path search,and make simulation analysis for this algorithm through the example,also verify the effectiveness of the proposed algorithm.展开更多
In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases an...In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.展开更多
Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonli...Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.展开更多
Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-de...Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time,release time,and due time.It is originated from an important industrial process,i.e.,wire rod and bar rolling process in steel production systems.Two objective functions,i.e.,the number of late jobs and total setup time,are minimized.A mixed integer linear program is established to describe the problem.To obtain its Pareto solutions,we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods,i.e.,an insertion-based local search and an iterated greedy algorithm.The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers.Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems.展开更多
Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitnes...Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.展开更多
In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (S...In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.展开更多
In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied ...In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.展开更多
Rankine source method,optimization technology,parametric modeling technology,and improved multiobjective optimization algorithm were combined to investigate the multiobjective optimization design of hull form.A multio...Rankine source method,optimization technology,parametric modeling technology,and improved multiobjective optimization algorithm were combined to investigate the multiobjective optimization design of hull form.A multiobjective and multilevel optimization design framework was constructed for the comprehensive navigation performance of ships.CAESES software was utilized as the optimization platform,and nondominated sorting genetic algorithm II(NSGA-II)was used to conduct multiobjective optimization research on the resistance and sea-keeping performance of the ITTC Ship A-2 fishing vessel.Optimization objectives of this study are heave/pitch response amplitude and wave-making resistance.Taking the displacement and the length between perpendiculars as constraints,we optimized the profile of the hull.Analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)were used to sort and select Pareto solutions and determine weight coefficient of each navigation performance objective in the general objective.Finally,the hydrodynamic performance before and after the parametric deformation of the hull was compared.The results show that both the wave-making resistance and heave/pitch amplitude of the optimized hull form are reduced,and the satisfactory optimal hull form is obtained.The results of this study have a certain reference value for the initial stage of multiobjective optimization design of hull form.展开更多
In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location...In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.展开更多
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne...In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.展开更多
基金This work was funded by the National Natural Science Foundation of China under Grant(No.61772152 and No.61502037)the Basic Research Project(Nos.JCKY2016206B001,JCKY2014206C002 and JCKY2017604C010)the Technical Foundation Project(No.JSQB2017206C002).
文摘Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive,but position relationship cannot fully represent the correlation changes.aimed at this drawback,the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm,firstly the position score of the returned results is standardized processing,and the similarity retrieval word string with the query results is combined into the algorithm,the similarity calculation method is also improved,through the experiment,the improved algorithm is superior to traditional sorting algorithm.
文摘This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The algorithm completes sorting a sequence of n elements in a calculation time of O(n ).
文摘By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data.
文摘This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases.
基金supported by the Styrelsen för Internationellt Utvecklingssamarbete.
文摘With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
基金Supported by the Natural Science Foundation of Zhejiang Province(No.LQ22F030015).
文摘This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises.
基金Project supported by the National Basic Research Program of China (973 Program) (No. 2007CB714600)
文摘The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines.
基金the Natural Science Key Foundation of Heilongjiang Province of China (No. ZJG0503) China-UK Sci-ence Network from Royal Society UK
文摘Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions.
基金in part supported by the Key Research and Development Project of Hubei Province(Nos.2020BAB1141,2023BAB094)the Key Project of Science and Technology Research ProgramofHubei Educational Committee(No.D20211402)+1 种基金the Teaching Research Project of Hubei University of Technology(No.XIAO2018001)the Project of Xiangyang Industrial Research Institute of Hubei University of Technology(No.XYYJ2022C04).
文摘The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem.
基金supported by the "Taishan Scholarship" Construction Engineering and Shandong Province Graduate Innovative Project(SDYC08011).
文摘Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on account of the insufficiency of this algorithm in path optimization,this paper uses adjacency list and circular linked list with combination to store date,and through the improved quick sorting algorithm for weight sorting, accomplish a quick search to the adjacent node,and so an improved Dijkstra algorithm is got.Then apply it to the optimal path search,and make simulation analysis for this algorithm through the example,also verify the effectiveness of the proposed algorithm.
文摘In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario.
基金supported in part by the Science and Technology Innovation Program of Hunan Province under Grant 2022RC4028in part by the National Natural Science Foundation of China under Grant 62473204+3 种基金in part by the Chunhui Program Collaborative Scientific Research Project under Grant 202202004in part by the Natural Science Foundation of Nanjing University of Posts and Telecommunications under Grants NY221082,NY222144,and NY223075in part by the Huali Program for Excellent Talents in Nanjing University of Posts and Telecommunicationsin part by the Postgraduate Research and Practice Innovation Program of Jiangsu Province under Grant KYCX24_1215.
文摘Modern automated generation control(AGC)is increasingly complex,requiring precise frequency control for stability and operational accuracy.Traditional PID controller optimisation methods often struggle to handle nonlinearities and meet robustness requirements across diverse operational scenarios.This paper introduces an enhanced strategy using a multi-objective optimisation framework and a modified non-dominated sorting genetic algorithm Ⅱ(SNSGA).The proposed model optimises the PID controller by minimising key performance metrics:integration time squared error(ITSE),integration time absolute error(ITAE),and rate of change of deviation(J).This approach balances convergence rate,overshoot,and oscillation dynamics effectively.A fuzzy-based method is employed to select the most suitable solution from the Pareto set.The comparative analysis demonstrates that the SNSGA-based approach offers superior tuning capabilities over traditional NSGA-Ⅱ and other advanced control methods.In a two-area thermal power system without reheat,the SNSGA significantly reduces settling times for frequency deviations:2.94s for Δf_(1) and 4.98s for Δf_(2),marking improvements of 31.6%and 13.4%over NSGA-Ⅱ,respectively.
基金This work was supported by the China Scholarship Council Scholarship,the National Key Research and Development Program of China(2017YFB0306400)the National Natural Science Foundation of China(62073069)the Deanship of Scientific Research(DSR)at King Abdulaziz University(RG-48-135-40).
文摘Group scheduling problems have attracted much attention owing to their many practical applications.This work proposes a new bi-objective serial-batch group scheduling problem considering the constraints of sequence-dependent setup time,release time,and due time.It is originated from an important industrial process,i.e.,wire rod and bar rolling process in steel production systems.Two objective functions,i.e.,the number of late jobs and total setup time,are minimized.A mixed integer linear program is established to describe the problem.To obtain its Pareto solutions,we present a memetic algorithm that integrates a population-based nondominated sorting genetic algorithm II and two single-solution-based improvement methods,i.e.,an insertion-based local search and an iterated greedy algorithm.The computational results on extensive industrial data with the scale of a one-week schedule show that the proposed algorithm has great performance in solving the concerned problem and outperforms its peers.Its high accuracy and efficiency imply its great potential to be applied to solve industrial-size group scheduling problems.
文摘Steady-state non-dominated sorting genetic algorithm (SNSGA), a new form of multi-objective genetic algorithm, is implemented by combining the steady-state idea in steady-state genetic algorithms (SSGA) and the fitness assignment strategy of non-dominated sorting genetic algorithm (NSGA). The fitness assignment strategy is improved and a new self-adjustment scheme of is proposed. This algorithm is proved to be very efficient both computationally and in terms of the quality of the Pareto fronts produced with five test problems including GA difficult problem and GA deceptive one. Finally, SNSGA is introduced to solve multi-objective mixed integer linear programming (MILP) and mixed integer non-linear programming (MINLP) problems in process synthesis.
文摘In this paper, a multi-objective particle swarm optimization (MOPSO) algorithm and a nondominated sorting genetic algorithm II (NSGA-II) are used to optimize the operating parameters of a 1.6 L, spark ignition (SI) gasoline engine. The aim of this optimization is to reduce engine emissions in terms of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx), which are the causes of diverse environmental problems such as air pollution and global warming. Stationary engine tests were performed for data generation, covering 60 operating conditions. Artificial neural networks (ANNs) were used to predict exhaust emissions, whose inputs were from six engine operating parameters, and the outputs were three resulting exhaust emissions. The outputs of ANNs were used to evaluate objective functions within the optimization algorithms: NSGA-II and MOPSO. Then a decision-making process was conducted, using a fuzzy method to select a Pareto solution with which the best emission reductions can be achieved. The NSGA-II algorithm achieved reductions of at least 9.84%, 82.44%, and 13.78% for CO, HC, and NOx, respectively. With a MOPSO algorithm the reached reductions were at least 13.68%, 83.80%, and 7.67% for CO, HC, and NOx, respectively.
基金National Natural Science Foundation of China(No.519667013)
文摘In view of the high cost of solar thermal power generation in China,it is difficult to realize large-scale production in engineering and industrialization.Non-dominated sorting genetic algorithm II(NSGA-II)is applied to optimize the levelling cost of energy(LCOE)of the solar thermal power generation system in this paper.Firstly,the capacity and generation cost of the solar thermal power generation system are modeled according to the data of several sets of solar thermal power stations which have been put into production abroad.Secondly,the NSGA-II genetic algorithm and particle swarm algorithm are applied to the optimization of the solar thermal power station LCOE respectively.Finally,for the linear Fresnel solar thermal power system,the simulation experiments are conducted to analyze the effects of different solar energy generation capacities,different heat transfer mediums and loan interest rates on the generation price.The results show that due to the existence of scale effect,the greater the capacity of the power station,the lower the cost of leveling and electricity,and the influence of the types of heat storage medium and the loan on the cost of leveling electricity are relatively high.
基金the National Natural Science Foundation of China(Nos.51779135 and 51009087)the Natural Science Foundation of Shanghai(No.14ZR1419500)。
文摘Rankine source method,optimization technology,parametric modeling technology,and improved multiobjective optimization algorithm were combined to investigate the multiobjective optimization design of hull form.A multiobjective and multilevel optimization design framework was constructed for the comprehensive navigation performance of ships.CAESES software was utilized as the optimization platform,and nondominated sorting genetic algorithm II(NSGA-II)was used to conduct multiobjective optimization research on the resistance and sea-keeping performance of the ITTC Ship A-2 fishing vessel.Optimization objectives of this study are heave/pitch response amplitude and wave-making resistance.Taking the displacement and the length between perpendiculars as constraints,we optimized the profile of the hull.Analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)were used to sort and select Pareto solutions and determine weight coefficient of each navigation performance objective in the general objective.Finally,the hydrodynamic performance before and after the parametric deformation of the hull was compared.The results show that both the wave-making resistance and heave/pitch amplitude of the optimized hull form are reduced,and the satisfactory optimal hull form is obtained.The results of this study have a certain reference value for the initial stage of multiobjective optimization design of hull form.
基金Natural Science Foundation of Shanghai,China(No.15ZR1401600)the Fundamental Research Funds for the Central Universities,China(No.CUSF-DH-D-2015096)
文摘In this paper,a novel location inventory routing(LIR)model is proposed to solve cold chain logistics network problem under uncertain demand environment. The goal of the developed model is to optimize costs of location,inventory and transportation.Due to the complex of LIR problem( LIRP), a multi-objective genetic algorithm(GA), non-dominated sorting in genetic algorithm Ⅱ( NSGA-Ⅱ) has been introduced. Its performance is tested over a real case for the proposed problems. Results indicate that NSGA-Ⅱ provides a competitive performance than GA,which demonstrates that the proposed model and multi-objective GA are considerably efficient to solve the problem.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa University,Riyadh,Saudi Arabia.
文摘In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature.